×

Homo-oligomerisation in signal transduction: dynamics, homeostasis, ultrasensitivity, bistability. (English) Zbl 1455.92046

Summary: Homo-oligomerisation of proteins is a ubiquitous phenomenon whose exact role remains unclear in many cases. To identify novel functions, this paper provides an exploration of general dynamical mathematical models of homo-oligomerisation. Simulation and analysis of these models show that homo-oligomerisation on its own allows for a remarkable variety of complex dynamic and steady state regulatory behaviour such as transient overshoots or homeostatic control of monomer concentration. If post-translational modifications are considered, however, conventional mass action kinetics lead to thermodynamic inconsistencies due to asymmetric combinatorial expansion of reaction routes. Introducing a conservation principle to balance rate equations re-establishes thermodynamic consistency. Using such balanced models it is shown that oligomerisation can lead to bistability by enabling pseudo-multisite modification and kinetic pseudo-cooperativity via multi-enzyme regulation, thereby constituting a novel motif for bistable modification reactions. Due to these potential signal processing capabilities, homo-oligomerisation could play far more versatile roles in signal transduction than previously appreciated.

MSC:

92C40 Biochemistry, molecular biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ali, M. H.; Imperiali, B., Protein oligomerization: how and why, Bioorg. Med. Chem., 13, 17, 5013-5020 (2005), URL:http://www.sciencedirect.com/science/article/pii/S0968089605004748
[2] Barr, F. A., Rab GTPases and membrane identity: causal or inconsequential?, J. Cell Biol., 202, 2, 191-199 (2013)
[3] Bezeljak, U., Loya, H., Kaczmarek, B., Saunders, T.E., Loose, M., 2020. Stochastic activation and bistability in a Rab GTPase regulatory network. PNAS. URL: https://www.pnas.org/content/early/2020/03/10/1921027117.
[4] Bouhaddou, M.; Birtwistle, M. R., Dimerization-based control of cooperativity, Mol. BioSyst., 10, 7, 1824-1832 (2014), URL:https://pubs.rsc.org/en/content/articlelanding/2014/mb/c4mb00022f
[5] Buchler, N. E.; Louis, M., Molecular titration and ultrasensitivity in regulatory networks, J. Mol. Biol., 384, 5, 1106-1119 (2008), URL:https://linkinghub.elsevier.com/retrieve/pii/S0022283608012485
[6] Byrne, K. M.; Monsefi, N.; Dawson, J. C.; Degasperi, A.; Bukowski-Wills, J.-C.; Volinsky, N.; Dobrzyński, M.; Birtwistle, M. R.; Tsyganov, M. A.; Kiyatkin, A.; Kida, K.; Finch, A. J.; Carragher, N. O.; Kolch, W.; Nguyen, L. K.; von Kriegsheim, A.; Kholodenko, B. N., Bistability in the Rac1, PAK, and RhoA signaling network drives actin cytoskeleton dynamics and cell motility switches, Cell Syst., 2, 1, 38-48 (2016), URL:http://www.cell.com/cell-systems/abstract/S2405-4712(16)00004-1
[7] Cannon, W. B., Organization for physiological homeostasis, Physiol. Rev., 9, 3, 399 (1929), URL:http://physrev.physiology.org/content/9/3/399.abstract
[8] Chen, M.; Peters, A.; Huang, T.; Nan, X., Ras dimer formation as a new signaling mechanism and potential cancer therapeutic target, Mini. Rev. Med. Chem., 16, 391-403 (2016), URL:http://www.eurekaselect.com/135447/article
[9] Conradi, C.; Mincheva, M., Catalytic constants enable the emergence of bistability in dual phosphorylation, J. R. Soc. Interface, 11, 95, 20140158 (2014), URL:https://royalsocietypublishing.org/doi/full/10.1098/rsif.2014.0158
[10] Conte-Zerial, P. D.; Brusch, L.; Rink, J. C.; Collinet, C.; Kalaidzidis, Y.; Zerial, M.; Deutsch, A., Membrane identity and GTPase cascades regulated by toggle and cut-out switches, Mol. Syst. Biol., 4, 1, 206 (2008), URL:http://msb.embopress.org/content/4/1/206
[11] Daitoku, H.; Isida, J.; Fujiwara, K.; Nakajima, T.; Fukamizu, A., Dimerization of small GTPase Rab5, Int. J. Mol. Med., 8, 4, 397-404 (2001), URL:http://www.spandidos-publications.com/10.3892/ijmm.8.4.397/abstract
[12] Ferrell, J. E.; Ha, S. H., Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback, Trends Biochem. Sci., 39, 11, 556-569 (2014), URL:http://www.sciencedirect.com/science/article/pii/S0968000414001698
[13] Frieden, C., Protein oligomerization as a metabolic control mechanism: application to apoE, Protein Sci., 28, 4, 837-842 (2019), URL:https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3583
[14] Furuuchi, K.; Berezov, A.; Kumagai, T.; Greene, M. I., Targeted antireceptor therapy with monoclonal antibodies leads to the formation of inactivated tetrameric forms of ErbB receptors, J. Immunol., 178, 2, 1021-1029 (2007), URL:https://www.jimmunol.org/content/178/2/1021
[15] Gan, H. K.; Walker, F.; Burgess, A. W.; Rigopoulos, A.; Scott, A. M.; Johns, T. G., The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 increases the formation of inactive untethered EGFR dimers, J. Biol. Chem., 282, 5, 2840-2850 (2007), URL:http://www.jbc.org/content/282/5/2840
[16] Goldbeter, A.; Koshland, D. E., An amplified sensitivity arising from covalent modification in biological systems, PNAS, 78, 11, 6840-6844 (1981), URL:http://www.pnas.org/content/78/11/6840
[17] Hlavacek, W. S.; Faeder, J. R.; Blinov, M. L.; Perelson, A. S.; Goldstein, B., The complexity of complexes in signal transduction, Biotechnol. Bioeng., 84, 7, 783-794 (2003)
[18] Hsu, C.; Jaquet, V.; Gencoglu, M.; Becskei, A., Protein dimerization generates bistability in positive feedback loops, Cell Rep., 16, 5, 1204-1210 (2016), URL:http://www.sciencedirect.com/science/article/pii/S2211124716308415
[19] Ingalls, B., Mathematical Modelling in Systems Biology: An Introduction (2013), MIT Press: MIT Press Cambridge MA · Zbl 1312.92003
[20] Kanno, D. M.; Levitus, M., Protein oligomerization equilibria and kinetics investigated by fluorescence correlation spectroscopy: a mathematical treatment, J. Phys. Chem. B, 118, 43, 12404-12415 (2014), URL:http://pubs.acs.org/doi/10.1021/jp507741r
[21] Keshet-Edelstein, L., Mathematical Models in Biology (2005), SIAM: SIAM Philadelphia · Zbl 1100.92001
[22] Klemm, J. D.; Schreiber, S. L.; Crabtree, G. R., Dimerization as a regulatory mechanism in signal transduction, Annu. Rev. Immunol., 16, 1, 569-592 (1998)
[23] Klipp, E.; Herwig, R.; Kowald, A.; Wierling, C.; Lehrach, H., Systems Biology in Practice (2005), Wiley-VCH: Wiley-VCH Weinheim
[24] Kozer, N.; Barua, D.; Orchard, S.; Nice, E. C.; Burgess, A. W.; Hlavacek, W. S.; Clayton, A. H.A., Exploring higher-order EGFR oligomerisation and phosphorylation – a combined experimental and theoretical approach, Mol. BioSyst., 9, 7, 1849-1863 (2013), URL:https://pubs.rsc.org/en/content/articlelanding/2013/mb/c3mb70073a
[25] Lawson, C. D.; Ridley, A. J., Rho GTPase signaling complexes in cell migration and invasion, J. Cell Biol., 217, 2, 447-457 (2018), URL:http://www.jcb.org/lookup/doi/10.1083/jcb.201612069
[26] Lynch, M., The evolution of multimeric protein assemblages, Mol. Biol. Evol., 29, 5, 1353-1366 (2012), URL:https://academic.oup.com/mbe/article/29/5/1353/1034121
[27] Marianayagam, N. J.; Sunde, M.; Matthews, J. M., The power of two: protein dimerization in biology, Trends Biochem. Sci., 29, 11, 618-625 (2004), URL:http://linkinghub.elsevier.com/retrieve/pii/S0968000404002348
[28] Markevich, N. I.; Hoek, J. B.; Kholodenko, B. N., Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell Biol., 164, 3, 353-359 (2004), URL:http://www.jcb.org/lookup/doi/10.1083/jcb.200308060
[29] Marsh, J. A.; Teichmann, S. A., Structure, dynamics, assembly, and evolution of protein complexes, Annu. Rev. Biochem., 84, 1, 551-575 (2015)
[30] Matthews, J. M.; Sunde, M., Dimers, oligomers, everywhere, (Matthews, J. M., Protein Dimerization and Oligomerization in Biology, vol. 747 (2012), Springer: Springer New York), 1-18
[31] Müller, M. P.; Goody, R. S., Molecular control of Rab activity by GEFs, GAPs and GDI, Small GTPases, 9, 1-2, 5-21 (2018)
[32] Murray, J. D., Mathematical Biology, I. An Introduction (2002), Springer: Springer Berlin Heidelberg · Zbl 1006.92001
[33] Ortega, F.; Garcés, J. L.; Mas, F.; Kholodenko, B. N.; Cascante, M., Bistability from double phosphorylation in signal transduction, FEBS J., 273, 17, 3915-3926 (2006)
[34] Parsons, E. S.; Stanley, G. J.; Pyne, A. L.B.; Hodel, A. W.; Nievergelt, A. P.; Menny, A.; Yon, A. R.; Rowley, A.; Richter, R. P.; Fantner, G. E.; Bubeck, D.; Hoogenboom, B. W., Single-molecule kinetics of pore assembly by the membrane attack complex, Nat. Commun., 10, 1, 2066 (2019), URL:https://www.nature.com/articles/s41467-019-10058-7
[35] Powers, E. T.; Powers, D. L., A Perspective on Mechanisms of Protein Tetramer Formation, Biophys. J., 85, 6, 3587-3599 (2003), URL:http://www.sciencedirect.com/science/article/pii/S0006349503747778
[36] Rajagopalan, S.; Huang, F.; Fersht, A. R., Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53, Nucleic Acids Res., 39, 6, 2294-2303 (2011), URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064802/
[37] Salazar, C.; Höfer, T., Competition effects shape the response sensitivity and kinetics of phosphorylation cycles in cell signaling, Ann. N. Y. Acad. Sci., 1091, 1, 517-530 (2006)
[38] Salazar, C.; Höfer, T., Multisite protein phosphorylation – from molecular mechanisms to kinetic models, FEBS J., 3177-3198 (2009)
[39] Schäuble, S.; Stavrum, A. K.; Puntervoll, P.; Schuster, S.; Heiland, I., Effect of substrate competition in kinetic models of metabolic networks, FEBS Lett., 587, 17, 2818-2824 (2013), URL:http://www.sciencedirect.com/science/article/pii/S0014579313004833
[40] Selwood, T.; Jaffe, E. K., Dynamic dissociating homo-oligomers and the control of protein function, Arch. Biochem. Biophys., 519, 2, 131-143 (2012), URL:http://www.sciencedirect.com/science/article/pii/S0003986111003948
[41] Shi, Y., Serine/threonine phosphatases: mechanism through structure, Cell, 139, 3, 468-484 (2009), URL:http://www.sciencedirect.com/science/article/pii/S0092867409012549
[42] Sonnen, K. F.; Aulehla, A., Dynamic signal encoding – from cells to organisms, Semin.. Cell. Dev. Biol., 34, 91-98 (2014), URL:http://www.sciencedirect.com/science/article/pii/S108495211400192X
[43] Stefan, M. I.; Bartol, T. M.; Sejnowski, T. J.; Kennedy, M. B., Multi-state modeling of biomolecules, PLoS Comput. Biol., 10, 9, Article e1003844 pp. (2014)
[44] Thomson, M.; Gunawardena, J., Unlimited multistability in multisite phosphorylation systems, Nature, 460, 7252, 274-277 (2009), URL:https://www.nature.com/articles/nature08102
[45] Tyson, J. J.; Chen, K. C.; Novak, B., Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell, Curr. Opin. Cell Biol., 15, 2, 221-231 (2003), URL:http://www.sciencedirect.com/science/article/pii/S0955067403000176
[46] Vera, J.; Millat, T.; Kolch, W.; Wolkenhauer, O., Dynamics of receptor and protein transducer homodimerisation, BMC Syst. Biol., 2, 1, 92 (2008)
[47] Voit, E. O., A First Course in Systems Biology (2012), Garland Science: Garland Science New York
[48] Zhang, B.; Zheng, Y., Negative regulation of rho family GTPases Cdc42 and Rac2 by homodimer formation, J. Biol. Chem., 273, 40, 25728-25733 (1998), URL:http://www.jbc.org/content/273/40/25728
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.