×

Holomorphic parafermions in the Potts model and stochastic Loewner evolution. (English) Zbl 1456.82176


MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
60K40 Other physical applications of random processes
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
82B23 Exactly solvable models; Bethe ansatz
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Zamolodchikov A and Fateev V 1985 Sov. Phys. JETP62 215
[2] Smirnov S 2006 Towards conformal invariance of 2D lattice models Proc. Int. Congr. of Mathematicians(Madrid, Aug. 2006) vol II (Zurich: European Mathematical Society) pp 1421-51 · Zbl 1112.82014
[3] Doyon B, Riva V and Cardy J 2006 Commun. Math. Phys.268 687 [math-ph/0511054] · Zbl 1121.81108
[4] Fortuin E and Kasteleyn P 1972 Physica57 536
[5] Kadanoff L and Ceva H 1971 Phys. Rev. B 3 3918
[6] Fradkin E and Kadanoff L 1980 Nucl. Phys. B 179 1
[7] Nienhuis B and Knops H 1985 Phys. Rev. B 32 1872
[8] Mercat C 2001 Commun. Math. Phys.218 177 · Zbl 1043.82005
[9] http://mathworld.wolfram.com/MorerasTheorem.html
[10] Dotsenko V and Dotsenko V 1983 Adv. Phys.32 129
[11] Baxter R 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[12] Schramm O 2000 Isr. J. Math.118 221 [math.PR/9904022] · Zbl 0968.60093
[13] Rhode S and Schramm O 2005 Ann. Math.161 879 [math.PR/0106036]
[14] Bauer M and Bernard D 2002 Phys. Lett. B 543 135 [math-ph/0206028] · Zbl 0997.60119
[15] Bauer M and Bernard D 2003 Commun. Math. Phys.239 493 [hep-th/0210015] · Zbl 1046.81091
[16] Cardy J 2004 Phys. Lett. B 582 121 · Zbl 1246.81318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.