Wei, X. B.; Guo, W. B.; Lytkina, D. V.; Mazurov, V. D.; Zhurtov, A. Kh. Solubility of finite generalized Frobenius groups with the kernel of odd index. (English) Zbl 1457.20019 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 1, 67-70 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 1, 88-92 (2020). Summary: A finite group \(G\) is said to be a generalized Frobenius group with kernel \(F\), if \(F\) is a proper nontrivial normal subgroup of \(G\) and for every element \(Fx\) of prime order of the quotient group \(G/F\) the coset \(Fx\) of the group \(G\) over \(F\) has only \(p\)-elements for some prime \(p\) depending on \(x\). This article considers generalized Frobenius groups with insoluble kernel. We prove that a quotient group of a generalized Frobenius group over its insoluble kernel is a 2-group. Cited in 1 Document MSC: 20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks 20D15 Finite nilpotent groups, \(p\)-groups Keywords:generalized Frobenius group; Camina pair PDFBibTeX XMLCite \textit{X. B. Wei} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 1, 67--70 (2020; Zbl 1457.20019) Full Text: DOI References: [1] Lewis, M. L., Group theory and computation (2018) [2] Wei, X. B.; Zhurtov, A. Kh.; Lytkina, D. V.; Mazurov, V. D., Finite groups close to Frobenius groups, Sib. Math. J., 60, 805-809 (2019) · Zbl 1516.20042 [3] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of Finite Groups (1985), Oxford: Clarendon Press, Oxford · Zbl 0568.20001 [4] Mazurov, V. D., Minimal permutation representation of finite simple classical groups. Special linear, symplectic, and unitary groups, Algebra and Logic, 32, 142-153 (1993) · Zbl 0854.20017 [5] Vasil’ev, A. V.; Mazurov, V. D., Minimal permutation representations of finite simple orthogonal groups, Algebra and Logic, 33, 337-350 (1994) · Zbl 0842.20015 [6] Vasil’ev, A. V., Minimal permutation representations of finite simple exceptional groups of types \(G_2\), Algebra and Logic, 35, 371-383 (1996) [7] Vasil’ev, A. V., Minimal permutation representations of finite simple exceptional groups of types \(E_6\), Algebra and Logic, 36, 302-310 (1997) [8] Vasil’ev, A. V., Minimal permutation representations of finite simple exceptional twisted groups, Algebra and Logic, 37, 9-20 (1998) · Zbl 0941.20007 [9] J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Lond. Math. Soc. Lect. Note Ser. (Cambridge University Press, 2013). · Zbl 1303.20053 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.