zbMATH — the first resource for mathematics

Decorrelation of a class of Gibbs particle processes and asymptotic properties of \(U\)-statistics. (English) Zbl 1457.60066
Summary: We study a stationary Gibbs particle process with deterministically bounded particles on Euclidean space defined in terms of an activity parameter and non-negative interaction potentials of finite range. Using disagreement percolation, we prove exponential decay of the correlation functions, provided a dominating Boolean model is subcritical. We also prove this property for the weighted moments of a \(U\)-statistic of the process. Under the assumption of a suitable lower bound on the variance, this implies a central limit theorem for such \(U\)-statistics of the Gibbs particle process. A by-product of our approach is a new uniqueness result for Gibbs particle processes.

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60F05 Central limit and other weak theorems
60D05 Geometric probability and stochastic geometry
Full Text: DOI
[1] Blaszczyszyn, B., Merzbach, E. andSchmidt, V. (1997). A note on expansion for functionals of spatial marked point processes. Statist. Prob. Lett.36 (3), 299-306. · Zbl 0897.60050
[2] Blaszczyszyn, B., Yogeshwaran, D. andYukich, J. E. (2019). Limit theory for geometric statistics of point processes having fast decay of correlations. Ann. Prob.47 (2), 835-895. · Zbl 07053558
[3] Chiu, S. N., Stoyan, D., Kendall, W. S. andMecke, J. (2013). Stochastic Geometry and its Applications, 3rd edn. Wiley, Chichester.
[4] Coeurjolly, J.-F., Møller, J. andWaagepetersen, R. (2017). A tutorial on Palm distributions for spatial point processes. Internat. Statist. Rev.83 (5), 404-420.
[5] Daley, D. J. andVere-Jones, D. (2003/2008). An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods, Vol. II: General Theory and Structure, 2nd edn. Springer, New York. · Zbl 1026.60061
[6] Dereudre, D., Drouilhet, R. andGeorgii, H.-O. (2012). Existence of Gibbsian point processes with geometry-dependent interactions. Prob. Theory Relat. Fields153, 643-670. · Zbl 1256.60036
[7] Dudley, R. M. (1989). Real Analysis and Probability (Wadsworth & Brooks/Cole Mathematics Series). Wadsworth & Brooks/Cole Advanced Books & Software.
[8] Ferrari, P. A., Fernández, R. andGarcia, N. L. (2002). Perfect simulation for interacting point processes, loss networks and Ising models. Stoch. Process. Appl.102, 63-88. · Zbl 1075.60583
[9] Flimmel, D. andBeneš, V. (2018). Gaussian approximation for functionals of Gibbs particle processes. Kybernetika54 (4), 765-777. · Zbl 1449.60012
[10] Georgii, H.-O. andKüneth, T. (1997). Stochastic order of point processes. J. Appl. Prob.34 (4), 868-881.
[11] Georgii, H.-O. andYoo, H. J. (2005). Conditional intensity and Gibbsianness of determinantal point processes. J. Statist. Phys. 118, 55-84. · Zbl 1130.82016
[12] Gouéré, J. B. (2008). Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Prob.36 (4), 1209-1220. · Zbl 1148.60077
[13] Hofer-Temmel, C. andHoudebert, P. (2019). Disagreement percolation for Gibbs ball models. Stoch. Process. Appl.129 (10), 3922-3940. · Zbl 1426.82016
[14] Jansen, S. (2019). Cluster expansions for Gibbs point processes. Adv. Appl. Prob.51 (4), 1129-1178. · Zbl 1427.60202
[15] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York. · Zbl 0996.60001
[16] Kallenberg, O. (2017). Random Measures, Theory and Applications. Springer, Cham. · Zbl 1376.60003
[17] Last, G. (2014). Perturbation analysis of Poisson processes. Bernoulli20, 486-513. · Zbl 1303.60039
[18] Last, G. andPenrose, M. (2017). Lectures on the Poisson Process. Cambridge University Press, Cambridge.
[19] Mase, S. (2000). Marked Gibbs processes and asymptotic normality of maximum pseudolikelihood estimators. Math. Nachr.209, 151-169. · Zbl 1123.62315
[20] Matthes, K., Warmuth, W. andMecke, J. (1979). Bemerkungen zu einer Arbeit von Nguyen Xuan Xanh und Hans Zessin. Math. Nachr.88, 117-127. · Zbl 0417.60062
[21] Meester, R. andRoy, R. (1996). Continuum Percolation. Cambridge University Press, Cambridge.
[22] Penrose, M. (1996). Continuum percolation and Euclidean minimal spanning trees in high dimensions Ann. Appl. Prob.6, 528-544. · Zbl 0855.60096
[23] Reitzner, M. andSchulte, M. (2013). Central limit theorems for U-statistics of Poisson point processes, Ann. Prob.41, 3879-3909. · Zbl 1293.60061
[24] Ruelle, D. (1970). Superstable interactions in classical statistical mechanics. Commun. Math. Phys.18, 127-159. · Zbl 0198.31101
[25] Schneider, R. andWeil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin. · Zbl 1175.60003
[26] Schreiber, T. andYukich, J. E. (2013). Limit theorems for geometric functionals of Gibbs point processes. Ann. Inst. H. Poincaré Prob. Statist.49, 1158-1182. · Zbl 1308.60064
[27] Torrisi, G. L. (2017). Probability approximation of point processes with Papangelou conditional intensity. Bernoulli23, 2210-2256. · Zbl 1407.60072
[28] Večeřa, J. andBeneš, V. (2016). Interaction processes for unions of facets, the asymptotic behaviour with increasing intensity. Methodology Comput. Appl. Prob.18 (4), 1217-1239. · Zbl 1370.60015
[29] Večeřa, J. andBeneš, V. (2017). Approaches to asymptotics for U-statistics of Gibbs facet processes. Statist. Prob. Lett.122, 51-57. · Zbl 1416.60022
[30] Xia, A. andYukich, J. E. (2015). Normal approximation for statistics of Gibbsian input in geometric probability. Adv. Appl. Prob.25, 934-972. · Zbl 1333.60037
[31] Ziesche, S. (2018). Sharpness of the phase transition and lower bounds for the critical intensity in continuum percolation on \(\mathbb{R}^d\) . Ann. Inst. H. Poincaré Prob. Statist.54, 866-878. · Zbl 1391.60246
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.