×

zbMATH — the first resource for mathematics

Estimation with the generalized exponential distribution based on record values and inter-record times. (English) Zbl 1457.62080
Summary: The maximum likelihood and Bayesian approaches have been considered for the two-parameter generalized exponential distribution based on record values with the number of trials following the record values (inter-record times). The maximum likelihood estimates are obtained under the inverse sampling and the random sampling schemes. It is shown that the maximum likelihood estimator of the shape parameter converges in mean square to the true value when the scale parameter is known. The Bayes estimates of the parameters have been developed by using Lindley’s approximation and the Markov Chain Monte Carlo methods due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The confidence intervals for the parameters are constructed based on asymptotic and Bayesian methods. The Bayes and the maximum likelihood estimators are compared in terms of the estimated risk by the Monte Carlo simulations. The comparison of the estimators based on the record values and the record values with their corresponding inter-record times are performed by using Monte Carlo simulations.

MSC:
62F10 Point estimation
62F15 Bayesian inference
62G32 Statistics of extreme values; tail inference
62N05 Reliability and life testing
Software:
BayesDA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gulati S, Padgett WJ. Smooth nonparametric estimation of the distribution and density functions from record-breaking data. Comm Statist Theory Methods. 1994;23:1256-1274. [Google Scholar] · Zbl 0825.62160
[2] Balakrishnan N, Chan PS. On the normal record values and associated inference. Statist Probab Lett. 1998;39:73-80. doi: 10.1016/S0167-7152(98)00048-0[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0903.62047
[3] Ahmadi J, Doostparast M. Bayesian estimation and prediction for some life distributions based on record values. Statist Papers. 2006;47(3):373-392. doi: 10.1007/s00362-006-0294-y[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1125.62020
[4] Soliman AA, Abd Ellah AH, Sultan KS. Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches. Comput Statist Data Anal. 2006;51:2065-2077. doi: 10.1016/j.csda.2005.12.020[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1157.62366
[5] Madi MT, Raqab MZ. Bayesian prediction of rainfall records using the generalized exponential distribution. Environmetrics. 2007;18:541-549. doi: 10.1002/env.826[Crossref], [Web of Science ®], [Google Scholar]
[6] Nadar M, Papadopoulos A, Kızılaslan F. Statistical analysis for Kumaraswamy’s distribution based on record data. Statist Papers. 2013;54(2):355-369. doi: 10.1007/s00362-012-0432-7[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1364.62054
[7] Arnold BC, Balakrishnan N, Nagaraja HN. Records. New York: John Wiley & Sons; 1998. [Google Scholar]
[8] Chandler KN. The distribution and frequency of record values. J R Stat Soc Ser B Stat Methodol. 1952;14:220-228. [Web of Science ®], [Google Scholar] · Zbl 0047.38302
[9] Renyi A. On the extreme elements of observations. MTA III Oszt Közl. 1962;12:105-121 (also, available in Selected Papers of Alfred Renyi, Vol. 3, P. Turan editor, Budapest: Akademiai Kiado; 1976. p. 50-66). [Google Scholar]
[10] Glick N. Breaking records and breaking boards. Amer Math Monthly. 1978;85:2-26. doi: 10.2307/2978044[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0395.62040
[11] Samaniego FJ, Whitaker LR. On estimating popular characteristics from record breaking observations. I.Parametric results. Naval Res Logist Quart. 1986;33:531-543. doi: 10.1002/nav.3800330317[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0605.62027
[12] Doostparast M, Balakrishnan N. Optimal sample size for record data and associated cost analysis for exponential distribution. J Stat Comput Simul. 2010;80(12):1389-1401. doi: 10.1080/00949650903150171[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1205.62060
[13] Doostparast M. A note on estimation based on record data. Metrika. 2009;69:69-80. doi: 10.1007/s00184-008-0178-3[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1433.62123
[14] Doostparast M, Balakrishnan N. Optimal record-based statistical procedures for the two-parameter exponential distribution. J Stat Comput Simul. 2011;81(12):2003-2019. doi: 10.1080/00949655.2010.513979[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1431.62211
[15] Doostparast M, Balakrishnan N. Pareto analysis based on records. Statistics 2013;47(5):1075-1089. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1440.62158
[16] Doostparast M, Deepak S, Zangoie A. Estimation with the lognormal distribution on the basis of records. J Stat Comput Simul. 2013;83(12):2339-2351. doi: 10.1080/00949655.2012.691973[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1453.62393
[17] Gupta RD, Kundu D. Generalized exponential distributions. Aust N Z J Stat. 1999;41:173-188. doi: 10.1111/1467-842X.00072[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1007.62503
[18] Kundu D, Gupta RD. Estimation of P(Y<X) for generalized exponential distribution. Metrika. 2005;61:291-308. doi: 10.1007/s001840400345[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1079.62032
[19] Kundu D, Gupta RD. Generalized exponential distribution: Bayesian estimations. Comput Statist Data Anal. 2008;52:1873-1883. doi: 10.1016/j.csda.2007.06.004[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1452.62182
[20] Baklizi A. Likelihood and Bayesian estimation of ⪻ (X<Y) using lower record values from the generalized exponential distribution. Comput Statist Data Anal. 2008;52:3468-3473. doi: 10.1016/j.csda.2007.11.002[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1452.62722
[21] Varian HR. A Bayesian approach to real estate assessment. In: Finberg SE, Zellner A, editors. Studies in Bayesian econometrics and statistics in honor of Leonard J. Savege. North Holland, Amesterdam; 1975. p. 195-208. [Google Scholar]
[22] Hofmann G, Nagaraja HN. Fisher information in record data. Metrika. 2003;57:177-193. doi: 10.1007/s001840200208[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1433.62019
[23] Ghitany ME, Al-Jarallah RA, Balakrishnan N. On the existence and uniqueness of the MLEs of the parameters of a general class of exponentiated distributions. Statistics. 2013;47(3):605-612. doi: 10.1080/02331888.2011.614950[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1327.62105
[24] Nevzorov VV. Records: mathematical theory. Translations of mathematical monographs. Providence, RI: American Mathematical Society; 2001. [Google Scholar]
[25] Lindley DV. Approximate Bayes method. Trabajos de Estadistica. 1980;3:281-288. [Google Scholar]
[26] Tierney L, Kadane JB. Accurate approximations for posterior moments and marginal densities. J Amer Statist Assoc. 1986;81:82-86. doi: 10.1080/01621459.1986.10478240[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0587.62067
[27] Tierney L. Markov chains for exploring posterior distributions. Ann Statist. 1994;22:1701-1762. doi: 10.1214/aos/1176325750[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0829.62080
[28] Chen MH, Shao QM. Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Statist. 1999;8:69-92. [Web of Science ®], [Google Scholar]
[29] Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. 2nd ed.London: Chapman & Hall; 2003. [Google Scholar] · Zbl 1039.62018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.