×

Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. (English) Zbl 1457.65202


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
35Q30 Navier-Stokes equations

Software:

Netgen; NGSolve
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo, 21 (1984), pp. 337–344. · Zbl 0593.76039
[2] D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), pp. 1–155. · Zbl 1185.65204
[3] J. Aubin, Approximation of Elliptic Boundary-Value Problems, Pure Appl. Math. 26, Wiley-Interscience, New York, 1972. · Zbl 0248.65063
[4] D. Boffi, M. Fortin, and F. Brezzi, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Berlin, 2013. · Zbl 1277.65092
[5] J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes, IMA J. Numer. Anal., 35 (2015), pp. 1672–1697, . · Zbl 1329.76249
[6] D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp., 77 (2008), pp. 651–672. · Zbl 1135.65041
[7] C. Brennecke, A. Linke, C. Merdon, and J. Schöberl, Optimal and pressure-independent \(L^2\) velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33 (2015), pp. 191–208. · Zbl 1340.76024
[8] F. Brezzi and R. S. Falk, Stability of higher-order Hood–Taylor methods, SIAM J. Numer. Anal., 28 (1991), pp. 581–590. · Zbl 0731.76042
[9] F. Brezzi, J. Douglas, and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217–235. · Zbl 0599.65072
[10] P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method, Math. Comp., 68 (1999), pp. 1379–1396. · Zbl 0929.65095
[11] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Engrg., 283 (2015), pp. 1–21, . · Zbl 1423.74876
[12] D. A. Di Pietro, A. Ern, A. Linke, and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 175–195.
[13] O. Dorok, W. Grambow, and L. Tobiska, Aspects of finite element discretizations for solving the Boussinesq approximation of the Navier–Stokes equations, Notes Numer. Fluid Mech. Numer. Methods Navier-Stokes Equ., 47 (1994), pp. 50–61. · Zbl 0876.76038
[14] R. G. Durán and A. L. Lombardi, Error estimates for the Raviart–Thomas interpolation under the maximum angle condition, SIAM J. Numer. Anal., 46 (2008), pp. 1442–1453. · Zbl 1168.65061
[15] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal., to appear, . · Zbl 1378.65041
[16] R. S. Falk and R. Winther, The bubble transform: A new tool for analysis of finite element methods, Found. Comput. Math., 16 (2016), pp. 297–328. · Zbl 1337.65152
[17] L. Franca and T. Hughes, Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg., 69 (1988), pp. 89–129. · Zbl 0629.73053
[18] G. Fu, Y. Jin, and W. Qiu, Parameter-Free Superconvergent \(H(\text{div})\)-Conforming HDG Methods for the Brinkman Equations, preprint, , 2016.
[19] K. Galvin, A. Linke, L. Rebholz, and N. Wilson, Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection, Comput. Methods Appl. Mech. Engrg., 237/240 (2012), pp. 166–176. · Zbl 1253.76057
[20] J.-F. Gerbeau, C. Le Bris, and M. Bercovier, Spurious velocities in the steady flow of an incompressible fluid subjected to external forces, Internat. J. Numer. Methods Fluids, 25 (1997), pp. 679–695. · Zbl 0893.76041
[21] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986. · Zbl 0413.65081
[22] B. Gmeiner, C. Waluga, and B. Wohlmuth, Local mass-corrections for continuous pressure approximations of incompressible flow, SIAM J. Numer. Anal., 52 (2014), pp. 2931–2956. · Zbl 1308.76164
[23] J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal., 34 (2014), pp. 1489–1508. · Zbl 1305.76056
[24] J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp., 83 (2014), pp. 15–36. · Zbl 1322.76041
[25] V. John, A. Linke, C. Merdon, M. Neilan, and L. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., to appear. · Zbl 1426.76275
[26] P. Lederer, Pressure-Robust Discretizations for Navier–Stokes Equations: Divergence-Free Reconstruction for Taylor–Hood Elements and High Order Hybrid Discontinuous Galerkin Methods, Master’s thesis, Vienna Technical University, Vienna, 2016.
[27] C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg., 307 (2016), pp. 339–361.
[28] A. Linke, A divergence-free velocity reconstruction for incompressible flows, C. R. Math. Acad. Sci. Paris, 350 (2012), pp. 837–840. · Zbl 1303.76106
[29] A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268 (2014), pp. 782–800. · Zbl 1295.76007
[30] A. Linke, G. Matthies, and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 289–309. · Zbl 1381.76186
[31] A. Linke and C. Merdon, On velocity errors due to irrotational forces in the Navier–Stokes momentum balance, J. Comput. Phys., 313 (2016), pp. 654–661. · Zbl 1349.65627
[32] A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 311 (2016), pp. 304–326, .
[33] A. Linke, C. Merdon, and W. Wollner, Optimal \({L}^2\) velocity error estimate for a modified pressure-robust Crouzeix-–Raviart Stokes element, IMA J. Numer. Anal., 37 (2017), pp. 354–374. · Zbl 1433.76089
[34] K.-A. Mardal, J. Schöberl, and R. Winther, A uniformly stable Fortin operator for the Taylor-Hood element, Numer. Math., 123 (2013), pp. 537–551. · Zbl 1261.65120
[35] J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math., 11 (1968), pp. 346–348. · Zbl 0175.45801
[36] M. Olshanskii and A. Reusken, Grad-Div stabilization for Stokes equations, Math. Comp., 73 (2004), pp. 1699–1718. · Zbl 1051.65103
[37] M. A. Olshanskii, G. Lube, T. Heister, and J. Löwe, Grad-Div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3975–3988. · Zbl 1231.76161
[38] P. Oswald, On a BPX preconditioner for \(P_1\) elements, Computing, 51 (1993), pp. 125–133. · Zbl 0787.65018
[39] J. M. T. P. A. Raviart, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comput., 31 (1977), pp. 391–413. · Zbl 0364.65082
[40] L. Prandtl, Prandtl—Essentials of Fluid Mechanics, 3rd ed., Appl. Math. Sci. 158, Springer, New York, 2010.
[41] J. Qin, On the Convergence of Some Low Order Mixed Finite Elements for Incompressible Fluids, Ph.D. thesis, Pennsylvania State University, State College, PA, 1994.
[42] J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., 1 (1997), pp. 41–52. · Zbl 0883.68130
[43] J. Schöberl, \(C++11\) Implementation of Finite Elements in NGSolve, Technical Report, ASC 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, 2014.
[44] J. Schöberl, J. M. Melenk, C. Prechstein, and S. Zaglmayr, Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements, IMA J. Numer. Anal., 28 (2007), pp. 1–24.
[45] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Anal. Numer., 18 (1984), pp. 175–182.
[46] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, Oxford, 2013.
[47] S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp., 74 (2005), pp. 543–554. · Zbl 1085.76042
[48] S. Zhang, A family of \(Q_{k+1,k}× Q_{k,k+1}\) divergence-free finite elements on rectangular grids, SIAM J. Numer. Anal., 47 (2009), pp. 2090–2107. · Zbl 1406.76055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.