×

Optimality criteria method in 2D linearized elasticity problems. (English) Zbl 1457.74161

Summary: In optimal design problems the goal is to find an optimal distribution of materials in a fixed domain which optimizes a criterion, computed through the solution of a partial differential equation modelling the involved physics. We consider optimal design problems in the setting of linearized elasticity, and restrict ourselves to domains filled with two isotropic elastic phases. Since a classical solution usually does not exist, we use the homogenization method in order to get a proper relaxation of the original problem. Unfortunately, the related G-closure problem in linearized elasticity is not solved. However, in the compliance minimization problem, G-closure can be replaced by a smaller subset made of sequential laminates, which is explicitly known. Moreover, for the compliance minimization the necessary conditions of optimality are easily derived, which enables a development of optimality criteria method for the numerical solution. We explicitly calculate the lower Hashin-Shtrikman bound on the complementary energy in two space dimensions, and necessary conditions of optimality. We develop an optimality criteria method for the single state compliance minimization problems.

MSC:

74P05 Compliance or weight optimization in solid mechanics
74B10 Linear elasticity with initial stresses
74Q20 Bounds on effective properties in solid mechanics
74E30 Composite and mixture properties

Software:

deal.ii
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allaire, G., Explicit lamination parameters for three-dimensional shape optimization, Control Cybern., 23, 309-326 (1994) · Zbl 0822.73046
[2] Allaire, G., Shape Optimization by the Homogenization Method (2002), Springer-Verlag · Zbl 0990.35001
[3] Allaire, G.; Kohn, R. V., Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions, Q. Appl. Math., 51, 4, 675-699 (1993) · Zbl 0805.73042
[4] Allaire, G.; Kohn, R. V., Optimal design for minimum weight and compliance in plane stress using extremal microstructures, Eur. J. Mech. A, Solids, 12, 6, 839-878 (1993) · Zbl 0794.73044
[5] Allaire, G.; Kohn, R. V., Optimal lower bounds on the elastic energy of a composite made from two non-well-ordered isotropic materials, Q. Appl. Math., LII, 2, 311-333 (1994) · Zbl 0806.73038
[6] Allaire, G.; Bonnetier, E.; Francfort, G.; Jouve, F., Shape optimization by the homogenization method, Numer. Math., 76, 27-68 (1997) · Zbl 0889.73051
[7] Avellaneda, M., Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl. Math., 47, 6, 1216-1228 (1987) · Zbl 0632.73079
[8] Bangerth, W.; Hartmann, R.; Kanschat, G., The deal.II library · Zbl 1375.65148
[9] Bendsøe, M., Methods for Optimization of Structural Topology, Shape and Material (1995), Springer · Zbl 0822.73001
[10] Burazin, K.; Crnjac, I., Convergence of the optimality criteria method for multiple state optimal design problems, Comput. Math. Appl., 79, 5, 1382-1392 (2020) · Zbl 1452.49002
[11] Burazin, K.; Crnjac, I.; Vrdoljak, M., Variant of optimality criteria method for multiple state optimal design problems, Commun. Math. Sci., 16, 6, 1597-1614 (2018) · Zbl 1408.49001
[12] Casado-Díaz, J.; Castro, C.; Luna-Laynez, M.; Zuazua, E., Numerical approximation of a one-dimensional elliptic optimal design problem, Multiscale Model. Simul., 9, 1181-1216 (2011) · Zbl 1246.49028
[13] Francfort, G.; Murat, F., Homogenization and optimal bounds in linear elasticity, Arch. Ration. Mech. Anal., 94, 307-334 (1986) · Zbl 0604.73013
[14] L. Gibianski, A. Cherkaev, Design of composite plates of extremal rigidity, Ioffe Physicotechnical Institute preprint, 1984.
[15] L. Gibianski, A. Cherkaev, Microstructures of composites of extremal rigidity and exact bounds of the associated energy density, Ioffe Physicotechnical Institute preprint, 1987.
[16] Kirsch, U., Optimum Structural Design (1981), McGraw-Hill: McGraw-Hill New York · Zbl 0478.73083
[17] Kohn, R. V.; Lipton, R., Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials, Arch. Ration. Mech. Anal., 102, 331-350 (1988) · Zbl 0662.73012
[18] Milton, G. W.; Kohn, R. V., Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids, 36, 597-629 (1988) · Zbl 0672.73012
[19] Murat, F.; Tartar, L., Calcul des variations et homogénéisation, (Les Méthodes de l’Homogenisation Théorie et Applications en Physique (Bréau-sans-Nappe, 1983). Les Méthodes de l’Homogenisation Théorie et Applications en Physique (Bréau-sans-Nappe, 1983), Coll. Dir. Etudes et Recherches EDF, vol. 57 (1985), Eyrolles: Eyrolles Paris), 319-369
[20] Rozvany, G., Structural Design and Optimality Criteria (1989), Kluwer Academic Publisers
[21] Save, M.; Prager, W., Structural Optimization, vol. 1, Optimality Criteria (1985), Plenum Press: Plenum Press New York, W. Warner (Ed.) · Zbl 0649.73042
[22] Tartar, L., Remarks on homogenization, (Ericsen, J.; etal., Homogenization and Effective Moduli of Materials and Media, vol. 228 (1986)), 246
[23] von Neumann, J., Some matrix inequalities and metrization of matrix space, (Tomsk University Rev., vol. 1 (1937)), 286-300 · Zbl 0017.09802
[24] Vrdoljak, M., On Hashin-Shtrikman bounds for mixtures of two isotropic materials, Nonlinear Anal., Real World Appl., 11, 4597-4606 (2010) · Zbl 1202.35317
[25] Zhikov, V.; Kozlov, S.; Oleinik, O., Homogenization of Differential Operators and Integral Functionals (1994), Springer-Verlag · Zbl 0838.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.