×

Isomorphic well-posedness of the final value problem for the heat equation with the homogeneous Neumann condition. (English) Zbl 1458.35216

Summary: This paper concerns the final value problem for the heat equation subjected to the homogeneous Neumann condition on the boundary of a smooth open set in Euclidean space. The problem is here shown to be isomorphically well posed in the sense that there exists a linear homeomorphism between suitably chosen Hilbert spaces containing the solutions and the data, respectively. This improves a recent work of the author, in which the same problem was proven well-posed in the original sense of Hadamard under an additional assumption of Hölder continuity of the source term. Like for its predecessor, the point of departure is an abstract analysis in spaces of vector distributions of final value problems generated by coercive Lax-Milgram operators, now yielding isomorphic well-posedness for such problems. Hereby the data space is the graph normed domain of an unbounded operator that maps final states to the corresponding initial states, resulting in a non-local compatibility condition on the data. As a novelty, a stronger version of the compatibility condition is introduced with the purpose of characterising the data that yield solutions having the regularity property of being square integrable in the generator’s graph norm (instead of in the form domain norm). This result allows a direct application to the class 2 boundary condition in the considered inverse Neumann heat problem.

MSC:

35K05 Heat equation
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35K10 Second-order parabolic equations
35K20 Initial-boundary value problems for second-order parabolic equations
47D06 One-parameter semigroups and linear evolution equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems, 2nd edn. Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel (2011) · Zbl 1226.34002
[2] Almog, Y.; Helffer, B., On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent, Commun. PDE, 40, 8, 1441-1466 (2015) · Zbl 1332.35241
[3] Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I, Monographs in Mathematics, vol. 89. Birkhäuser, Boston, Abstract linear theory (1995) · Zbl 0819.35001
[4] Arendt, W.; Dafermos, CM; Feireisl, E., Semigroups and evolution equations: functional calculus, regularity theory and kernel estimates, Handbook of Differential Equations, Evolutionary Problems, 1-86 (2004), Amsterdam: Elsevier, Amsterdam
[5] Bardos, C.; Tartar, L., Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Rat. Mech. Anal., 50, 10-25 (1973) · Zbl 0258.35039
[6] Christensen, A.-E., Johnsen, J.: Final value problems for parabolic differential equations and their well-posedness. Axioms 7, 1-36 (2018) · Zbl 1432.35246
[7] Christensen, A-E; Johnsen, J., On parabolic final value problems and well-posedness, C. R. Acad. Sci. Paris Ser., I, 356, 301-305 (2018) · Zbl 1432.35245
[8] Davies, E.B.: One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, (1980) · Zbl 0457.47030
[9] Denk, R., Hieber, M.G., Prüss, J.: \(R\)-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Mem. Amer. Math. Soc. (2003) · Zbl 1274.35002
[10] Dore, G.; Venni, A., On the closedness of the sum of two closed operators, Math. Z., 196, 189-201 (1987) · Zbl 0615.47002
[11] Eldén, L., Approximations for a Cauchy problem for the heat equation, Inverse Prob., 3, 2, 263-273 (1987) · Zbl 0645.35094
[12] Engel, K-J; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics (2000), New York: Springer, New York · Zbl 0952.47036
[13] Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (2010) · Zbl 1194.35001
[14] Fury, MA, Logarithmic well-posed approximation of the backward heat equation in Banach space, J. Math. Anal. Appl., 475, 2, 1367-1384 (2019) · Zbl 1423.47004
[15] Grebenkov, DS; Helffer, B., On spectral properties of the Bloch-Torrey operator in two dimensions, SIAM J. Math. Anal., 50, 1, 622-676 (2018) · Zbl 1387.35427
[16] Grebenkov, DS; Helffer, B.; Henry, R., The complex Airy operator on the line with a semipermeable barrier, SIAM J. Math. Anal., 49, 3, 1844-1894 (2017) · Zbl 1430.47001
[17] Grubb, G.: Functional Calculus of Pseudodifferential Boundary Problems, 2nd edn. Progress in Mathematics, vol. 65. Birkhäuser, Boston (1996) · Zbl 0844.35002
[18] Grubb, G., Distributions and Operators, Graduate Texts in Mathematics (2009), New York: Springer, New York · Zbl 1171.47001
[19] Grubb, G.; Solonnikov, VA, Solution of parabolic pseudo-differential initial-boundary value problems, J. Differ. Equ., 87, 256-304 (1990) · Zbl 0713.35109
[20] Helffer, B., Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics (2013), Cambridge: Cambridge University Press, Cambridge
[21] Herbst, IW, Dilation analyticity in constant electric field. I. The two body problem, Commun. Math. Phys., 64, 3, 279-298 (1979) · Zbl 0447.47028
[22] Hörmander, L.: The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 1983 (1985)
[23] Janas, J., On unbounded hyponormal operators. III, Stud. Math., 112, 1, 75-82 (1994) · Zbl 0820.47025
[24] John, F., Numerical solution of the equation of heat conduction for preceding times, Ann. Mat. Pura Appl. (4), 40, 129-142 (1955) · Zbl 0066.10504
[25] Johnsen, J., Characterization of log-convex decay in non-selfadjoint dynamics, Electron. Res. Announc. Math. Sci., 25, 72-86 (2018)
[26] Johnsen, J.: A Class of Well-Posed Parabolic Final Value Problems. In: Boggiato, P. et al. (eds.) Advances in Microlocal and Time-Frequency Analysis. Appl. Num. Harm. Anal., vol. 99. Birkhäuser, pp. 259-280 (2020) · Zbl 1451.35078
[27] Johnsen, J., Well-posed final value problems and Duhamel’s formula for coercive Lax-Milgram operators, Electr. Res. Arch., 27, 20-36 (2019) · Zbl 1439.35303
[28] Johnsen, J.: On a Criterion for Log-Convex Decay in Non-selfadjoint Dynamics. Research Perspectives. Birkhäuser
[29] Lions, J-L; Malgrange, B., Sur l’unicité rétrograde dans les problèmes mixtes parabolic, Math. Scand., 8, 277-286 (1960) · Zbl 0126.12202
[30] Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications, Springer-Verlag, New York-Heidelberg. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften (1972) · Zbl 0223.35039
[31] Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of mathematical monographs, vol. 23. American Mathematical Society (1968)
[32] Masuda, K., A note on the analyticity in time and the unique continuation property for solutions of diffusion equations, Proc. Jpn. Acad., 43, 420-422 (1967) · Zbl 0153.45401
[33] Miranker, WL, A well posed problem for the backward heat equation, Proc. Am. Math. Soc., 12, 243-247 (1961) · Zbl 0098.06602
[34] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences (1983), New York: Springer, New York · Zbl 0516.47023
[35] Rauch, J., Partial Differential Equations (1991), Berlin: Springer, Berlin · Zbl 0742.35001
[36] Schwartz, L.: Transformation de Laplace des distributions. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], pp. 196-206 (1952) · Zbl 0047.34903
[37] Schwartz, L., Théorie des Distributions, revised and enlarged edition (1966), Paris: Hermann, Paris
[38] Showalter, RE, The final value problem for evolution equations, J. Math. Anal. Appl., 47, 563-572 (1974) · Zbl 0296.34059
[39] Tanabe, H.: Equations of evolution, Monographs and Studies in Mathematics, vol. 6, Pitman, Boston, MA, Translated from the Japanese by N. Mugibayashi and H. Haneda (1979) · Zbl 0417.35003
[40] Temam, R., Navier-Stokes equations, theory and numerical analysis (1984), Amsterdam: Elsevier, Amsterdam
[41] Yosida, K., An abstract analyticity in time for solutions of a diffusion equation, Proc. Jpn. Acad., 35, 109-113 (1959) · Zbl 0091.27202
[42] Yosida, K., Functional Analysis (1980), Berlin, New York: Springer, Berlin, New York · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.