×

Time series analysis of categorical data using auto-odds ratio function. (English) Zbl 1458.62204

Summary: In this paper, we consider the auto-odds ratio function (AORF) as a measure of serial association for a stationary time series process of categorical data at two different time points. Numerical measures such as the autocorrelation function (ACF) have no meaningful interpretation, unless the time series data are numerical. Instead, we use the AORF as a measure of association to study the serial dependency of the categorical time series for both ordinal and nominal categories. A. Biswas and P. X. K. Song [Stat. Probab. Lett. 79, No. 17, 1884–1889 (2009; Zbl 1169.62073)] provided some results on this measure for Pegram’s operator-based AR(1) process with binary responses. Here, we extend this measure to more general set-ups, i.e. for AR\((p)\) and MA\((q)\) processes and for a general number of categories. We discuss how this method can effectively be used in parameter estimation and model selection. Following C. H. Weiß [J. Stat. Comput. Simulation 81, No. 4, 411–429 (2011; Zbl 1221.62129)], we derive the large sample distribution of the estimator of the AORF under independent and identically distributed (iid) set-up. Some simulation results and two categorical data examples (one is ordinal and other nominal) are presented to illustrate the proposed method.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62H12 Estimation in multivariate analysis
62-08 Computational methods for problems pertaining to statistics
62P10 Applications of statistics to biology and medical sciences; meta analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agresti, A., Categorical data analysis, 359 (2002), Hoboken (NJ): John Wiley & Sons, Hoboken (NJ) · Zbl 1018.62002
[2] Weiß, CH; Göb, R., Measuring serial dependence in categorical time series, AStA Adv Stat Anal, 92, 1, 71-89 (2008) · Zbl 1171.62055 · doi:10.1007/s10182-008-0055-4
[3] Biswas, A.; Guha, A., Time series analysis of categorical data using auto-mutual information, J Stat Plan Inference, 139, 9, 3076-3087 (2009) · Zbl 1168.62078 · doi:10.1016/j.jspi.2009.02.009
[4] Jacobs, PA; Lewis, PA., Discrete time series generated by mixtures. I: correlational and runs properties, J R Stat Soc Ser B (Methodol), 40, 1, 94-105 (1978) · Zbl 0374.62087
[5] Jacobs, PA; Lewis, PA., Discrete time series generated by mixtures II: asymptotic properties, J R Stat Soc Ser B (Methodol), 40, 2, 222-228 (1978) · Zbl 0388.62086
[6] Jacobs, PA, Lewis, PA, Discrete time series generated by mixtures III: autoregressive processes (DAR(p)). Monterey, CA: Naval Postgraduate School; 1978 (Technical report).
[7] Raftery, AE., A model for high-order Markov chains, J R Stat Soc Ser B (Methodol), 47, 3, 528-539 (1985) · Zbl 0593.62091
[8] Berchtold, A.; Raftery, AE., The mixture transition distribution model for high-order Markov chains and non-Gaussian time series, Stat. Sci, 17, 3, 328-356 (2002) · Zbl 1013.62088 · doi:10.1214/ss/1042727943
[9] Pegram, GGS., An autoregressive model for multilag Markov chains, J Appl Probabil, 17, 2, 350-362 (1980) · Zbl 0428.60082 · doi:10.1017/S0021900200047185
[10] Biswas, A.; Song, PX-K., Discrete-valued ARMA processes, Stat Probabil Lett, 79, 17, 1884-1889 (2009) · Zbl 1169.62073 · doi:10.1016/j.spl.2009.05.025
[11] Jacobs, PA; Lewis, PAW., Stationary discrete autoregressive-moving average time series generated by mixtures, J Time Ser Anal, 4, 1, 19-36 (1983) · Zbl 0526.62084 · doi:10.1111/j.1467-9892.1983.tb00354.x
[12] Weiß, CH., Empirical measures of signed serial dependence in categorical time series, J Stat Comput Simul, 81, 4, 411-429 (2011) · Zbl 1221.62129 · doi:10.1080/00949650903384119
[13] Weiß, CH., Serial dependence of NDARMA process, Comput Stat Data Anal, 68, 1, 213-238 (2013) · Zbl 1471.62213 · doi:10.1016/j.csda.2013.07.009
[14] Biswas, A.; del Carmen Pardo, M.; Guha, A., Auto-association measures for stationary time series of categorical data, TEST, 23, 3, 487-514 (2014) · Zbl 1309.62147 · doi:10.1007/s11749-014-0364-8
[15] Fokianos, K.; Kedem, B., Regression theory for categorical time series, Stat Sci, 18, 3, 357-376 (2003) · Zbl 1055.62095 · doi:10.1214/ss/1076102425
[16] Maiti, R.; Biswas, A., Coherent forecasting for stationary time series of discrete data, Adv Stat Anal, 99, 337-365 (2015) · Zbl 1443.62279
[17] Heagerty, PJ; Zeger, SL., Lorelogram: a regression approach to exploring dependence in longitudinal categorical responses, J Am Stat Assoc, 93, 441, 150-162 (1998) · Zbl 0908.62019 · doi:10.1080/01621459.1998.10474097
[18] Stoffer, DS; Scher, MS; Richardson, GA, A walsh-Fourier analysis of the effects of moderate maternal alcohol consumption on neonatal sleep-state cycling, J Am Stat Assoc, 83, 404, 954-963 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.