×

An optimized Crank-Nicolson finite difference extrapolating model for the fractional-order parabolic-type sine-Gordon equation. (English) Zbl 1458.65118

Summary: In this paper, by means of a proper orthogonal decomposition (POD) we mainly reduce the order of the classical Crank-Nicolson finite difference (CCNFD) model for the fractional-order parabolic-type sine-Gordon equations (FOPTSGEs). Toward this end, we will first review the CCNFD model for FOPTSGEs and the theoretical results (such as existence, stabilization, and convergence) of the CCNFD solutions. Then we establish an optimized Crank-Nicolson finite difference extrapolating (OCNFDE) model, including very few unknowns but holding the fully second-order accuracy for FOPTSGEs via POD. Next, by a matrix analysis we will discuss the existence, stabilization, and convergence of the OCNFDE solutions. Finally, we will use a numerical example to validate the validity of theoretical conclusions. Moreover, we show that the OCNFDE model is very valid for settling FOPTSGEs.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

Software:

redbKIT
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ. Equ., 26, 448-479, (2010) · Zbl 1185.65187
[2] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[3] Liu, F., Zhuang, P., Liu, Q.X.: Numerical Methods of Fractional Partial Differential Equations and Their Applications. Science Press, Beijing (2015) (in Chinese)
[4] Cao, Y. H.; Luo, Z. D., A reduced-order extrapolating Crank-Nicolson finite difference scheme for the Riesz space fractional order equations with a nonlinear source function and delay, J. Nonlinear Sci. Appl., 11, 672-682, (2018)
[5] Elsaid, A.; Hammad, D., A reliable treatment of homotopy perturbation method for the sine-Gordon equation of arbitrary (fractional) order, J. Fract. Calc. Appl., 2, 1-8, (2012)
[6] Yousef, A. M.; Rida, S. Z.; Ibrahim, H. R., Approximate solution of fractional-order nonlinear sine-Gordon equation, Elixir Appl. Math., 82, 32549-32553, (2015)
[7] Macías-Díaz, J. E., Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 46, 89-102, (2017)
[8] Zhou, Y. J.; Luo, Z. D., A Crank-Nicolson finite difference scheme for the Riesz space fractional order parabolic type sine-Gordon equation, Adv. Differ. Equ., 2018, (2018)
[9] Sirovich, L., Turbulence and the dynamics of coherent structures: parts I-III, Q. Appl. Math., 45, 561-590, (1987) · Zbl 0676.76047
[10] Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996) · Zbl 0890.76001
[11] Cazemier, W.; Verstappen, R. W.C. P.; Veldman, A. E.P., Proper orthogonal decomposition and low-dimensional models for driven cavity flows, Phys. Fluids, 10, 1685-1699, (1998)
[12] Ly, H. V.; Tran, H. T., Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor, Q. Appl. Math., 60, 631-656, (1989) · Zbl 1146.76631
[13] Fukunaga, K.: Introduction to Statistical Recognition. Academic Press, New York (1990) · Zbl 0711.62052
[14] Jolliffe, I.T.: Principal Component Analysis. Springer, Berlin (2002) · Zbl 1011.62064
[15] Selten, F. M., Baroclinic empirical orthogonal functions as basis functions in an atmospheric model, J. Atmos. Sci., 54, 2099-2114, (1997)
[16] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 117-148, (2001) · Zbl 1005.65112
[17] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal., 40, 492-515, (2002) · Zbl 1075.65118
[18] Luo, Z. D.; Chen, J.; Navon, I. M.; Yang, X. Z., Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations, SIAM J. Numer. Anal., 47, 1-19, (2008) · Zbl 1391.76351
[19] Luo, Z. D.; Li, H.; Zhou, Y. J.; Xie, Z. H., A reduced finite element formulation based on POD method for two-dimensional solute transport problems, J. Math. Anal. Appl., 385, 371-383, (2012) · Zbl 1243.65123
[20] Luo, Z. D.; Yang, X. Z.; Zhou, Y. J., A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation, J. Comput. Appl. Math., 229, 97-107, (2009) · Zbl 1179.65111
[21] Sun, P.; Luo, Z. D.; Zhou, Y. J., Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations, Appl. Numer. Math., 60, 154-164, (2010) · Zbl 1193.65159
[22] Luo, Z. D.; Xie, Z. H.; Shang, Y. Q.; Chen, J., A reduced finite volume element formulation and numerical simulations based on POD for parabolic problems, J. Comput. Appl. Math., 235, 2098-2111, (2011) · Zbl 1227.65076
[23] Luo, Z. D.; Li, H.; Zhou, Y. J.; Huang, X. M., A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem, J. Math. Anal. Appl., 385, 310-321, (2012) · Zbl 1368.74071
[24] Benner, P., Cohen, A., Ohlberger, M., Willcox, A.K.: Model Reduction and Approximation: Theory and Algorithm. Computational Science & Engineering. SIAM, Philadelphia (2017) · Zbl 1378.65010
[25] Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer, Berlin (2016) · Zbl 1329.65203
[26] Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. Springer, Berlin (2016) · Zbl 1337.65113
[27] Dehghan, M.; Abbaszadeh, M., An upwind local radial basis functions-differential quadrature (RBF-DQ) method with proper orthogonal decomposition (POD) approach for solving compressible Euler equation, Eng. Anal. Bound. Elem., 92, 244-256, (2018) · Zbl 1403.65109
[28] Dehghan, M.; Abbaszadeh, M., A reduced proper orthogonal decomposition (POD) element free Galerkin (POD-EFG) method to simulate two-dimensional solute transport problems and error estimate, Appl. Numer. Math., 126, 92-112, (2018) · Zbl 1380.65255
[29] Dehghan, M.; Abbaszadeh, M., A combination of proper orthogonal decomposition-discrete empirical interpolation method (POD-DEIM) and meshless local RBF-DQ approach for prevention of groundwater contamination, Comput. Math. Appl., 75, 1390-1412, (2018)
[30] Dehghan, M.; Abbaszadeh, M., The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations, J. Comput. Phys., 351, 478-510, (2017) · Zbl 1380.65301
[31] Luo, Z. D.; Li, H.; Sun, P.; Gao, J. Q., A reduced-order finite difference extrapolation algorithm based on POD technique for the non-stationary Navier-Stokes equations, Appl. Math. Model., 37, 5464-5473, (2013) · Zbl 1426.76478
[32] Luo, Z. D.; Gao, J. Q., A POD-based reduced-order finite difference time-domain extrapolating scheme for the 2D Maxwell equations in a lossy medium, J. Math. Anal. Appl., 444, 433-451, (2016) · Zbl 1382.65252
[33] Xia, H.; Luo, Z. D., An optimized finite difference iterative scheme based on POD technique for the 2D viscoelastic wave equation, Appl. Math. Mech., 38, 1721-1732, (2017) · Zbl 1380.65190
[34] Xia, H.; Luo, Z. D., A POD-based optimized finite difference CN extrapolated implicit scheme for the 2D viscoelastic wave equation, Math. Methods Appl. Sci., 40, 6880-6890, (2017) · Zbl 1387.65091
[35] Liu, S.; Fu, Z. T.; Liu, S., Exact solutions to sine-Gordon-type equations, Phys. Lett. A, 351, 59-63, (2006) · Zbl 1234.35227
[36] Luo, Z.D., Chen, G.: Proper Orthogonal Decomposition Methods for Partial Differential Equations. Mathematics in Science and Engineering. Elsevier, Amsterdam (2018). https://www.elsevier.com/books/proper-orthogonal-decomposition-methods-for-partial-differential-equations/luo/978-0-12-816798-4
[37] Chung, T.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002) · Zbl 1037.76001
[38] Zhang, W.S.: Finite Difference Methods for Partial Differential Equations in Science Computation. Higher Education Press, Beijing (2006)
[39] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764, (2010) · Zbl 1217.65169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.