Soliton elastic interactions and dynamical analysis of a reduced integrable nonlinear Schrödinger system on a triangular-lattice ribbon. (English) Zbl 1459.37061

Summary: Under investigation in this paper is a discrete reduced integrable nonlinear Schrödinger system on a triangular-lattice ribbon, which may have some prospective applications in modern nanoribbon. First, we construct the infinitely many conservation laws and discrete \(N\)-fold Darboux transformation for this system based on its known Lax pair. Then bright-bright multi-soliton and breather solutions in terms of determinants are obtained by means of the resulting Darboux transformation. Moreover, we investigate soliton interactions through asymptotic analysis and analyze some important physical quantities such as amplitudes, wave numbers, wave widths, velocities, energies and initial phases. Finally, the dynamical evolution behaviors are discussed via numerical simulations. It is found that soliton interactions in this system are elastic, and their evolutions are stable against a small noise in a short period of time. Results obtained in this paper may have some prospective applications for understanding some physical phenomena.


37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35C08 Soliton solutions
35Q55 NLS equations (nonlinear Schrödinger equations)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI


[1] Wazwaz, AM; Kaur, L., Complex simplified Hirota’s forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation, Nonlinear Dyn., 95, 2209-2215 (2019)
[2] Wazwaz, AM; Kaur, L., New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions, Nonlinear Dyn., 97, 83-94 (2019) · Zbl 1430.37078
[3] Wazwaz, AM, Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations, Nonlinear Dyn., 85, 731-737 (2016)
[4] Wazwaz, AM, Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations, Appl. Math. Lett., 88, 1-7 (2019) · Zbl 1410.35188
[5] Zuo, DW; Gao, YT; Meng, GQ; Shen, YJ; Xin, Y., Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system, Nonlinear Dyn., 75, 701-708 (2014) · Zbl 1283.35116
[6] Hu, XB; Ma, WX, Application of Hirota’s bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Phys. Lett A, 293, 161-165 (2002) · Zbl 0985.35072
[7] Kivshar, YS; Agrawal, GP, Optical Solitons: From Fibers to Photonic Crystals (2003), New York: Academic Press, New York
[8] Agrawal, GP, Nonlinear Fiber Optics (2013), New York: Academic Press, New York
[9] Malomed, BA; Mihalache, D.; Wise, F.; Torner, L., Spatiotemporal optical solitons, J. Opt. B: Quantum Semiclass. Opt., 7, R53-R72 (2005)
[10] Mihalache, D., Localized optical structures: an overview of recent theoretical and experimental developments, Proc. Roman. Acad. A, 16, 62-69 (2015)
[11] Yue, Y.; Huang, L.; Chen, Y., \(N\)-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation, Comput. Math. Appl., 75, 2538-2548 (2018) · Zbl 1409.35188
[12] Akhmediev, N.; Soto-Crespo, JM; Ankiewicz, A., How to excite a rogue wave, Phys. Rev. A, 80, 043818 (2009)
[13] Ma, WX, The inverse scattering transform and soliton solutions of a combined modified Korteweg-de Vries equation, J. Math. Anal. Appl., 471, 796-811 (2019) · Zbl 1412.35380
[14] Ablowitz, MJ; Kaup, DJ; Newell, AC; Segui, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53, 249-315 (1974)
[15] Chen, XJ; Lam, WK, Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions, Phys. Rev. E, 69, 066604 (2004)
[16] Ji, JL; Zhu, ZN, Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform, J. Math. Anal. Appl., 453, 973-984 (2017) · Zbl 1369.35079
[17] Dodd, RK; Bullough, RK, Bäcklund transformations for the sine-Gordon equations, Proc. R. Soc. Lond., 351, 499-523 (1976) · Zbl 0353.35063
[18] Ma, WX; Hu, XB; Zhu, SM; Wu, YT, Bäcklund transformation and its superposition principle of a Blaszak-Marciniak four-field lattice, J. Math. Phys., 40, 6071 (1999) · Zbl 1063.37564
[19] Liu, YP; Gao, YT; Wei, GM, An improved \(\Gamma \)-Riccati Bäcklund transformation and its applications for the inhomogeneous nonlinear Schrödinger model from plasma physics and nonlinear optics, Phys. A, 391, 535-543 (2012)
[20] Liu, DY; Tian, B.; Jiang, Y.; Sun, WR, Soliton solutions and Bäcklund transformations of a (2+1)-dimensional nonlinear evolution equation via the Jaulent-Miodek hierarchy, Nonlinear Dyn., 78, 2314-2347 (2014) · Zbl 1331.37092
[21] Zhao, XH; Tian, B.; Xie, XY; Wu, XY; Sun, Y.; Guo, YJ, Solitons, Bäcklund transformation and lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth, Waves Random. Complex., 28, 356-366 (2018)
[22] Wen, XY; Yang, YQ; Yan, Z., Generalized perturbation \((n, M)\)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation, Phys. Rev. E., 92, 012917 (2015)
[23] Wen, XY; Yan, Z.; Malomed, BA, Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: exact solutions and stability, Chaos, 26, 123110 (2016) · Zbl 1378.35284
[24] Wen, XY; Wang, DS, Modulational instability and higher order-rogue wave solutions for the generalized discrete Hirota equation, Wave Motion, 79, 84-97 (2018)
[25] Yu, F.; Feng, S., Explicit solution and Darboux transformation for a new discrete integrable soliton hierarchy with \(4\times 4\) Lax pairs, Math. Method. Appl. Sci., 40, 5515-5525 (2017) · Zbl 1384.37093
[26] Xue, YS; Tian, B.; Ai, WB; Qi, FH; Guo, R.; Qin, B., Soliton interactions in a generalized inhomogeneous coupled Hirota-Maxwell-Bloch system, Nonlinear Dyn., 67, 2799-2807 (2012)
[27] Yu, JP; Ma, WX; Sun, YL; Khalique, CM, \(N\)-fold Darboux transformation and conservation laws of the modified Volterra lattice, Mod. Phys. Lett. B, 32, 1850409 (2018)
[28] Fan, EG, Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation, J. Phys. A: Math. Gen., 33, 6925-6933 (2000) · Zbl 0960.35093
[29] Wen, XY, elastic interaction and conservation laws for the nonlinear self-dual network equation in electric circuit, J. Phys. Soc. Jpn., 81, 114006 (2012)
[30] Guo, R.; Zhao, XJ, Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions, Nonlinear Dyn., 84, 1901-1907 (2016) · Zbl 1355.37085
[31] Li, Q.; Wang, DS; Wen, XY; Zhuang, JH, An integrable lattice hierarchy based on Suris system: \(N\)-fold Darboux transformation and conservation laws, Nonlinear Dyn., 91, 625-639 (2018) · Zbl 1390.37112
[32] Ling, L.; Feng, BF; Zhu, Z., General soliton solutions to a coupled Fokas-Lenells equation, Nonlinear Anal., 40, 185-214 (2018) · Zbl 1382.35068
[33] Ma, WX; Zhang, YJ, Darboux transformations of integrable couplings and applications, Rev. Math. Phys., 30, 1850003 (2018) · Zbl 1383.35194
[34] Xu, T.; Chen, Y., Darboux transformation of the coupled nonisospectral Gross-Pitaevskii system and its multi-component generalization, Commun. Nonlinear Sci. Numer. Simul., 57, 276-289 (2018)
[35] Wang, HT; Wen, XY, Dynamics of discrete soliton propagation and elastic interaction in a higher-order coupled Ablowitz-Ladik equation, Appl. Math. Lett., 100, 106013 (2020) · Zbl 1426.37054
[36] Liu, P.; Jia, M.; Lou, SY, Lax pair and exact solutions of a discrete coupled system related to coupled KdV and coupled mKdV equations, Phys. Scripta, 76, 674-679 (2007) · Zbl 1134.81378
[37] Dauxois, T.; Ruffo, S., Fermi-Pasta-Ulam nonlinear lattice oscillations, Scholarpedia, 3, 8, 5538 (2008)
[38] Vakhnenko, OO, Solitons on a zigzag-runged ladder lattice, Phys. Rev. E., 64, 067601 (2001)
[39] Vakhnenko, OO, Integrable nonlinear ladder system with background-controlled intersite resonant coupling, J. Phys. A: Math. Gen., 39, 11013-11027 (2006) · Zbl 1108.82007
[40] Vakhnenko, OO, Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice, J. Math. Phys., 56, 033505 (2015) · Zbl 1308.82100
[41] Vakhnenko, OO, Asymmetric canonicalization of the integrable nonlinear Schrödinger system on a triangular-lattice ribbon, Appl. Math. Lett., 64, 81-86 (2017) · Zbl 1351.37250
[42] Vakhnenko, OO, Coupling-governed metamorphoses of the integrable nonlinear Schrödinger system on a triangular-lattice ribbon, Phys. Lett. A, 380, 2069-2074 (2016)
[43] Vakhnenko, OO, Integrable nonlinear Schrödinger system on a triangular-lattice ribbon, J. Phys. Soc. Jpn., 84, 014003 (2015)
[44] Trías, E.; Mazo, JJ; Orlando, TP, Discrete breathers in nonlinear lattices: experimental detection in a Josephson array, Phys. Rev. Lett., 84, 741 (2000)
[45] Binder, P.; Abraimov, D.; Ustinov, AV; Flach, S.; Zolotaryuk, Y., Observation of breathers in Josephson ladders, Phys. Rev. Lett., 84, 745 (2000)
[46] Bronsard, S.A., Pelinovsky, D.E.: New interable semi-discretizations of the coupled nonlinear Schrödinger equations (2017). arXiv:1705.05974v1
[47] Zhang, DJ; Chen, DY, The conservation laws of some discrete soliton systems, Chaos Soliton. Fract., 14, 573-579 (2002) · Zbl 1067.37114
[48] Xu, T.; Li, HJ; Zhang, HJ; Li, M.; Lan, S., Darboux transformation and analytic solutions of the discrete PT-symmetric nonlocal nonlinear Schrödinger equation, Appl. Math. Lett., 63, 88-94 (2017) · Zbl 1351.35195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.