×

zbMATH — the first resource for mathematics

No solitary waves in 2D gravity and capillary waves in deep water. (English) Zbl 1459.76029

MSC:
76B25 Solitary waves for incompressible inviscid fluids
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B45 Capillarity (surface tension) for incompressible inviscid fluids
35Q51 Soliton equations
PDF BibTeX Cite
Full Text: DOI
References:
[1] Alazard T, Ifrim M and Tataru D 2018 A Morawetz inequality for water waves (arXiv:1806.08443)
[2] Amick C J, Fraenkel L E and Toland J F 1982 On the Stokes conjecture for the wave of extreme form Acta Math.148 193-214 · Zbl 0495.76021
[3] Amick C J and Kirchgässner K 1989 A theory of solitary water-waves in the presence of surface tension Arch. Ration. Mech. Anal.105 1-49 · Zbl 0666.76046
[4] Amick C J and Toland J F 1981 On solitary water-waves of finite amplitude Arch. Ration. Mech. Anal.76 9-95 · Zbl 0468.76025
[5] Babenko K I 1987 A local existence theorem in the theory of surface waves of finite amplitude Dokl. Akad. Nauk SSSR294 1289-92
[6] Babenko K I 1987 Some remarks on the theory of surface waves of finite amplitude Dokl. Akad. Nauk SSSR294 1033-7
[7] Beale J T 1977 The existence of solitary water waves Commun. Pure Appl. Math.30 373-89 · Zbl 0379.35055
[8] Benjamin T B and Olver P J 1982 Hamiltonian structure, symmetries and conservation laws for water waves J. Fluid Mech.125 137-85 · Zbl 0511.76020
[9] Buffoni B 2004 Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation Arch. Ration. Mech. Anal.173 25-68 · Zbl 1110.76308
[10] Buffoni B 2004 Existence by minimisation of solitary water waves on an ocean of infinite depth Ann. Inst. Henri Poincaré21 503-16 C · Zbl 1109.76013
[11] Buffoni B, Dancer E N and Toland J F 2000 The sub-harmonic bifurcation of Stokes waves Arch. Ration. Mech. Anal.152 241-71 · Zbl 0962.76012
[12] Buffoni B and Groves M D 1999 A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory Arch. Ration. Mech. Anal.146 183-220 · Zbl 0965.76015
[13] Buffoni B, Groves M D and Toland J F 1996 A plethora of solitary gravity-capillary water waves with nearly critical bond and Froude numbers Phil. Trans. R. Soc. A 354 575-607 · Zbl 0861.76012
[14] Coifman R R and Meyer Y 1978 Au Delà Des Opérateurs Pseudo-Différentiels(Astérisque vol 57) (Paris: Société Mathématique de France) · Zbl 0483.35082
[15] Constantin A 2011 Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis CBMS-NSF Regional Conference Series in Applied Mathematics (Philadelphia, PA: SIAM) vol 81 · Zbl 1266.76002
[16] Craig W 2002 Non-existence of solitary water waves in three dimensions Phil. Trans. R. Soc. A 360 2127-35 · Zbl 1013.76015
[17] Crapper G D 1957 An exact solution for progressive capillary waves of arbitrary amplitude J. Fluid Mech.2 532-40 · Zbl 0079.19304
[18] Dyachenko A, Kuznetsov E, Spector M and Zakharov V 1996 Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping) Phys. Lett. A 221 73-9
[19] Friedrichs K O and Hyers D H 1954 The existence of solitary waves Commun. Pure Appl. Math.7 517-50 · Zbl 0057.42204
[20] Groves M D 2004 Steady water waves J. Nonlinear Math. Phys.11 435-60 · Zbl 1064.35144
[21] Groves M D, Haragus M and Sun S M 2002 A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves Phil. Trans. R. Soc. A 360 2189-243 · Zbl 1068.76007
[22] Groves M D and Sun S-M 2008 Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem Arch. Ration. Mech. Anal.188 1-91 · Zbl 1133.76010
[23] Groves M D and Wahlén E 2011 On the existence and conditional energetic stability of solitary gravity-capillary surface waves on deep water J. Math. Fluid Mech.13 593-627 · Zbl 1270.35365
[24] Hunter J K, Ifrim M and Tataru D 2016 Two dimensional water waves in holomorphic coordinates Commun. Math. Phys.346 483-552 · Zbl 1358.35121
[25] Hur V M 2012 No solitary waves exist on 2D deep water Nonlinearity25 3301-12 · Zbl 1322.35191
[26] Ifrim M and Tataru D 2016 Two dimensional water waves in holomorphic coordinates II: global solutions Bull. Soc. Math. Fr.144 369-94 · Zbl 1360.35179
[27] Ifrim M and Tataru D 2017 The lifespan of small data solutions in two dimensional capillary water waves Arch. Ration. Mech. Anal.225 1279-346 · Zbl 1375.35347
[28] Iooss G and Kirrmann P 1996 Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves Arch. Ration. Mech. Anal.136 1-19 · Zbl 0879.76011
[29] Longuet-Higgins M S 1988 Limiting forms for capillary-gravity waves J. Fluid Mech.194 351-75 · Zbl 0649.76005
[30] Longuet-Higgins M S 1989 Capillary-gravity waves of solitary type on deep water J. Fluid Mech.200 451-70 · Zbl 0665.76015
[31] Ovsjannikov L V 1974 To the shallow water theory foundation Arch. Mech.26 407-22 · Zbl 0283.76012
[32] Ovsjannikov L V 1973 Papers Presented at the 11th Symp. on Advanced Problems and Methods in Fluid Mechanics
[33] Plotnikov P I 1991 Nonuniqueness of solutions of a problem on solitary waves, and bifurcations of critical points of smooth functionals Izv. Akad. Nauk SSSR Ser. Mat.55 339-66
[34] Părău E I, Vanden-Broeck J-M and Cooker M J 2005 Nonlinear three-dimensional gravity-capillary solitary waves J. Fluid Mech.536 · Zbl 1073.76010
[35] Shargorodsky E and Toland J F 2008 Bernoulli free-boundary problems Mem. Amer. Math. Soc.196 914 · Zbl 1167.35001
[36] Stokes G 1847 On the theory of oscillatory waves Camb. Trans. Phil. Soc.8 441-73
[37] Sun S M 1997 Some analytical properties of capillary-gravity waves in two-fluid flows of infinite depth Proc. R. Soc. A 453 1153-75 · Zbl 0885.76015
[38] Toland J F 1978 On the existence of a wave of greatest height and Stokes’s conjecture Proc. R. Soc. A 363 469-85 · Zbl 0388.76016
[39] Wheeler M H 2016 Integral and Asymptotic properties of solitary waves in deep water (arXiv:1604.01092)
[40] Wu S 1997 Well-posedness in Sobolev spaces of the full water wave problem in 2D Invent. Math.130 39-72 · Zbl 0892.76009
[41] Wu S 2009 Almost global wellposedness of the 2D full water wave problem Invent. Math.177 45-135 · Zbl 1181.35205
[42] Zakharov V E 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid J. Appl. Mech. Tech. Phys.9 190-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.