×

Peristaltic flow and heat transfer of nanofluids in a sinusoidal wall channel: two-phase analytical study. (English) Zbl 1459.76164

Summary: In this study, two-phase peristaltic nanofluid flow in two-dimensional wavy channel is modeled and the heat transfer analysis is performed for it. Both upper and lower channel walls are considered in a wavy shape by sinusoidal function. The governing equations are presented for the nanofluid based on the Buongiorno model and two analytical methods (least square method and differential transformation method). Maple 15.0 mathematical software is applied as the efficient solution methods for the governing equation. The effect of some parameters present in the governing equations (Brownian motion parameter, thermophoresis parameters, Grashof numbers and amplitude ratio of wavy channel), are discussed in terms of velocities, temperature and nanoparticles concentration functions. An important finding in this study is that, in order to have more nanoparticles concentration around the sinusoidal walls, thermophoresis parameter must be in lower values and vice versa.

MSC:

76T20 Suspensions
76M99 Basic methods in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow

Software:

Maple
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tripathi, Dharmendra, and O. Anwar Bég. 2014. A study on peristaltic flow of nanofluids: Application in drug delivery systems. International Journal of Heat and Mass Transfer 70: 61-70. · doi:10.1016/j.ijheatmasstransfer.2013.10.044
[2] Ghasemi, S.E., M. Vatani, M. Hatami, and D.D. Ganji. 2016. Analytical and numerical investigation of nanoparticle effect on peristaltic fluid flow in drug delivery systems. Journal of Molecular Liquids 215: 88-97. · doi:10.1016/j.molliq.2015.12.001
[3] Hatami, M., D. Song, and D. Jing. 2016. Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition. International Journal of Heat and Mass Transfer 98: 758-767. · doi:10.1016/j.ijheatmasstransfer.2016.03.063
[4] Tang, Wenhui, M. Hatami, Jiandong Zhou, and Dengwei Jing. 2017. Natural convection heat transfer in a nanofluid-filled cavity with double sinusoidal wavy walls of various phase deviations. International Journal of Heat and Mass Transfer 115: 430-440. · doi:10.1016/j.ijheatmasstransfer.2017.07.057
[5] Hatami, M. 2017. Nanoparticles migration around the heated cylinder during the RSM optimization of a wavy-wall enclosure. Advanced Powder Technology 28 (3): 890-899. · doi:10.1016/j.apt.2016.12.015
[6] Hatami, M., and D. Jing. 2017. Optimization of wavy direct absorber solar collector (WDASC) using Al2O3-water nanofluid and RSM analysis. Applied Thermal Engineering 121: 1040-1050. · doi:10.1016/j.applthermaleng.2017.04.137
[7] Zhou, Jiandong, M. Hatami, Dongxing Song, and Dengwei Jing. 2016. Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. International Journal of Heat and Mass Transfer 103: 715-724. · doi:10.1016/j.ijheatmasstransfer.2016.07.100
[8] Rush, T.A., T.A. Newell, and A.M. Jacobi. 1999. An experimental study of flow and heat transfer in sinusoidal wavy passages. International Journal of Heat and Mass Transfer 42 (9): 1541-1553. · doi:10.1016/S0017-9310(98)00264-6
[9] Sui, Y., P.S. Lee, and C.J. Teo. 2011. An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section. International Journal of Thermal Sciences 50 (12): 2473-2482. · doi:10.1016/j.ijthermalsci.2011.06.017
[10] Greiner, M. 1991. An experimental investigation of resonant heat transfer enhancement in grooved channels. International Journal of Heat and Mass Transfer 34 (6): 1383-1391. · doi:10.1016/0017-9310(91)90282-J
[11] Haghshenas Fard, M., M. Nasr Esfahany, and M.R. Talaie. 2010. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. International Communications in Heat and Mass Transfer 37: 91-97. · doi:10.1016/j.icheatmasstransfer.2009.08.003
[12] Göktepe, Sinan, Kunt Atalık, and Hakan Ertürk. 2014. Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. International Journal of Thermal Sciences 80: 83-92. · doi:10.1016/j.ijthermalsci.2014.01.014
[13] Mohyud-Din, Syed Tauseef, Zulfiqar Ali Zaidi, Umar Khan, and Naveed Ahmed. 2015. On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerospace Science and Technology 46: 514-522. · doi:10.1016/j.ast.2015.07.020
[14] Hayat, Tasawar, Maria Imtiaz, Ahmed Alsaedi, and Marwan A. Kutbi. 2015. MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. Journal of Magnetism and Magnetic Materials 396: 31-37. · doi:10.1016/j.jmmm.2015.07.091
[15] Khan, J.A., M. Mustafa, T. Hayat, and A. Alsaedi. 2015. Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy. International Journal of Heat and Mass Transfer 86: 158-164. · doi:10.1016/j.ijheatmasstransfer.2015.02.078
[16] Fakour, M., A. Vahabzadeh, D.D. Ganji, and M. Hatami. 2015. Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls. Journal of Molecular Liquids 204: 198-204. · doi:10.1016/j.molliq.2015.01.040
[17] Ghasemi, Seiyed E., M. Hatami, A. Kalani Sarokolaie, and D.D. Ganji. 2015. Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods. Physica E: Low-dimensional Systems and Nanostructures 70: 146-156. · doi:10.1016/j.physe.2015.03.002
[18] Ghasemi, S.E., M. Hatami, G.H.R. Mehdizadeh Ahangar, and D.D. Ganji. 2014. Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method. Journal of Electrostatics 72 (1): 47-52. · doi:10.1016/j.elstat.2013.11.005
[19] Rahimi-Gorji, M., O. Pourmehran, M. Hatami, and D.D. Ganji. 2015. Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis. The European Physical Journal Plus 130: 22. · doi:10.1140/epjp/i2015-15022-8
[20] Domairry, G., and M. Hatami. 2014. Squeezing Cu – water nanofluid flow analysis between parallel plates by DTM-Padé Method. Journal of Molecular Liquids 193: 37-44. · doi:10.1016/j.molliq.2013.12.034
[21] Ahmadi, A.R., A. Zahmatkesh, M. Hatami, and D.D. Ganji. 2014. A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate. Powder Technology 258: 125-133. · doi:10.1016/j.powtec.2014.03.021
[22] Hatami, M., and D.D. Ganji. 2014. Thermal behavior of longitudinal convective – radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). Ceramics International 40 (5): 6765-6775. · doi:10.1016/j.ceramint.2013.11.140
[23] Hatami, M., and D.D. Ganji. 2014. Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. International Journal of Refrigeration 40: 140-151. · doi:10.1016/j.ijrefrig.2013.11.002
[24] Hatami, M., G.H.R. Mehdizadeh Ahangar, D.D. Ganji, and K. Boubaker. 2014. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Conversion and Management 84: 533-540. · doi:10.1016/j.enconman.2014.05.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.