×

Double maxima of angular momentum transport in small gap \(\eta =0.91\) Taylor-Couette turbulence. (English) Zbl 1460.76433

Summary: We use experiments and direct numerical simulations to probe the phase space of low-curvature Taylor-Couette flow in the vicinity of the ultimate regime. The cylinder radius ratio is fixed at \(\eta =r_i/r_o=0.91\), where \(r_i (r_o)\) is the inner (outer) cylinder radius. Non-dimensional shear drivings (Taylor numbers \(Ta\)) in the range \(10^7\leq Ta\leq 10^{11}\) are explored for both co- and counter-rotating configurations. In the \(Ta\) range \(10^8\leq Ta \leq 10^{10}\), we observe two local maxima of the angular momentum transport as a function of the cylinder rotation ratio, which can be described as either ‘co-’ or ‘counter-rotating’ due to their location or as ‘broad’ or ‘narrow’ due to their shape. We confirm that the broad peak is accompanied by the strengthening of the large-scale structures, and that the narrow peak appears once the driving (\(Ta\)) is strong enough. As first evidenced in numerical simulations by H. J. Brauckmann et al. [ibid. 790, 419–452 (2016; Zbl 1382.76280)], the broad peak is produced by centrifugal instabilities and that the narrow peak is a consequence of shear instabilities. We describe how the peaks change with \(Ta\) as the flow becomes more turbulent. Close to the transition to the ultimate regime when the boundary layers (BLs) become turbulent, the usual structure of counter-rotating Taylor vortex pairs breaks down and stable unpaired rolls appear locally. We attribute this state to changes in the underlying roll characteristics during the transition to the ultimate regime. Further changes in the flow structure around \(Ta\approx 10^{10}\) cause the broad peak to disappear completely and the narrow peak to move. This second transition is caused when the regions inside the BLs which are locally smooth regions disappear and the whole boundary layer becomes active.

MSC:

76F35 Convective turbulence
76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence
76-05 Experimental work for problems pertaining to fluid mechanics
76U05 General theory of rotating fluids

Citations:

Zbl 1382.76280

Software:

AFiD
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andereck, C. D., Liu, S. S. & Swinney, H. L.1986Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech.164, 155-183.
[2] Brauckmann, H. J. & Eckhardt, B.2013aDirect numerical simulations of local and global torque in Taylor-Couette flow up to \(Re=30\,000\). J. Fluid Mech.718, 398-427. · Zbl 1284.76219
[3] Brauckmann, H. J. & Eckhardt, B.2013bIntermittent boundary layers and torque maxima in Taylor-Couette flow. Phys. Rev. E87, 033004. · Zbl 1284.76219
[4] Brauckmann, H. J. & Eckhardt, B.2017Marginally stable and turbulent boundary layers in low-curvature Taylor-Couette flow. J. Fluid Mech.815, 149-168. · Zbl 1383.76221
[5] Brauckmann, H. J., Salewski, M. & Eckhardt, B.2016Momentum transport in Taylor-Couette flow with vanishing curvature. J. Fluid Mech.790, 419-452. · Zbl 1382.76280
[6] Chandrasekhar, S.1981Hydrodynamic and Hydromagnetic Stability. Dover.
[7] Cheng, N.-S.2008Formula for the viscosity of a glycerol-water mixture. Ind. Engng Chem. Res.47, 3285-3288.
[8] Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P. Y., Richard, D. & Zahn, J. P.2005Stability and turbulent transport in Taylor-Couette flow from analysis of experimental data. Phys. Fluids17, 095103. · Zbl 1187.76132
[9] Eckhardt, B., Grossmann, S. & Lohse, D.2007Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders. J. Fluid Mech.581, 221-250. · Zbl 1165.76342
[10] Fardin, M. A., Perge, C. & Taberlet, N.2014The hydrogen atom of fluid dynamics – introduction to the Taylor-Couette flow for soft matter scientists. Soft Matt.10, 3523-3535.
[11] Van Gils, D. P. M., Bruggert, G.-W., Lathrop, D. P., Sun, C. & Lohse, D.2011The Twente turbulent Taylor-Couette (T3C) facility: strongly turbulent (multiphase) flow. Rev. Sci. Instrum.82, 025105.
[12] Van Gils, D. P. M., Huisman, S. G., Grossmann, S., Sun, C. & Lohse, D.2012Optimal Taylor-Couette turbulence. J. Fluid Mech.706, 118-149. · Zbl 1275.76034
[13] Grossmann, S. & Lohse, D.2011Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids23, 045108.
[14] Grossmann, S., Lohse, D. & Sun, C.2016High-Reynolds number Taylor-Couette turbulence. Annu. Rev. Fluid Mech.48, 53-80. · Zbl 1356.76106
[15] Huisman, S. G., Van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D.2012Ultimate turbulent Taylor-Couette flow. Phys. Rev. Lett.108, 024501. · Zbl 1275.76034
[16] Huisman, S. G., Van Der Veen, R. C. A., Sun, C. & Lohse, D.2014Multiple states in highly turbulent Taylor-Couette flow. Nat. Commun.5, 3820.
[17] Lewis, G. S. & Swinney, H. L.1999Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow. Phys. Rev. E59, 5457-5467.
[18] Malkus, M. V. R.1954The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A225, 196-212. · Zbl 0058.20203
[19] Martinez-Arias, B., Peixinho, J., Crumeyrolle, O. & Mutabazi, I.2014Effect of the number of vortices on the torque scaling in Taylor-Couette flow. J. Fluid Mech.748, 756-767.
[20] Merbold, S., Brauckmann, H. J. & Egbers, C.2013Torque measurements and numerical determination in differentially rotating wide gap Taylor-Couette flow. Phys. Rev. E87, 023014.
[21] Ostilla-Mónico, R., Huisman, S. G., Van Der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D.2014aExploring the phase diagram of fully turbulent Taylor-Couette flow. J. Fluid Mech.761, 1-26.
[22] Ostilla-Mónico, R., Huisman, S. G., Jannink, T. J. G., Van Gils, D. P. M., Verzicco, R., Grossmann, S., Sun, C. & Lohse, D.2014bOptimal Taylor-Couette flow: radius ratio dependence. J. Fluid Mech.747, 1-29.
[23] Ostilla-Mónico, R., Lohse, D. & Verzicco, R.2016Effect of roll number on the statistics of turbulent Taylor-Couette flow. Phys. Rev. Fluids1, 054402. · Zbl 1381.76130
[24] Ostilla-Mónico, R., Van Der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D.2014Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor-Couette flow. Phys. Fluids26, 015114.
[25] Ostilla-Mónico, R., Verzicco, R. & Lohse, D.2015Effects of the computational domain size on DNS of Taylor-Couette turbulence with stationary outer cylinder. Phys. Fluids27, 025110.
[26] Paoletti, M. S. & Lathrop, D. P.2011Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett.106, 024501.
[27] Van Der Poel, E. P., Ostilla-Mónico, R., Donners, J. & Verzicco, R.2015A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids116, 10-16. · Zbl 1390.76250
[28] Van Der Poel, E. P., Stevens, R. & Lohse, D.2011Connecting flow structures and heat flux in turbulent Rayleigh-Bénard convection. Phys. Rev. E84, 045303(R).
[29] Van Der Poel, E. P., Stevens, R., Sugiyama, K. & Lohse, D.2012Flow states in two-dimensional Rayleigh-Bénard convection as a function of aspect-ratio and rayleigh number. Phys. Fluids24, 085104.
[30] Sacco, F., Verzicco, R. & Ostilla-Mónico, R.2019Dynamics and evolution of turbulent Taylor rolls. J. Fluid Mech.870, 970-987. · Zbl 1419.76690
[31] Taylor, G. I.1923Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A223, 289-343. · JFM 49.0607.01
[32] Verzicco, R. & Orlandi, P.1996A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys.123, 402-413. · Zbl 0849.76055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.