×

Dynamics of shear-layer coherent structures in a forced wall-bounded flow. (English) Zbl 1461.76165

Summary: A model problem for analysing the interaction between coherent structures in shear flows with the presence of a convective instability is proposed in this work. Starting from Couette flow, a permanent forcing in the shape of a hyperbolic tangent is introduced in the laminar equations, leading to a wall-bounded flow with an inflection point, which triggers a hydrodynamic instability. Temporal linear stability analysis applied to this new flow model shows that this flow is unstable at low Reynolds numbers, giving rise to Kelvin-Helmholtz-like vortices. Due to the presence of shear, streaks and rolls (streamwise vortices), predicted by resolvent analysis, are also present in the flow, and these structures will interact with vortices via oblique waves. Results of locally parallel analysis inspired the design of a computational box for a direct numerical simulation of such flow and the numerical results exhibit a limit cycle involving streaks, vortices, rolls, oblique waves and the mean flow, so that the flow becomes periodically unstable for the present case. The flow dynamics is shown to reproduce some of the features of jets and mixing layers, such as jitter and translational instability, showing that the present model can potentially clarify some of the phenomena involved in the turbulent dynamics of such flows.

MSC:

76E15 Absolute and convective instability and stability in hydrodynamic stability

Software:

SIMSON
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alkislar, M. B., Krothapalli, A. & Butler, G. W.2007The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech.578, 139-169. · Zbl 1111.76300
[2] Baggett, J. S. & Trefethen, L. N.1997Low-dimensional models of subcritical transition to turbulence. Phys. Fluids9 (4), 1043-1053. · Zbl 1185.76574
[3] Baqui, Y. B., Agarwal, A., Cavalieri, A. V. G. & Sinayoko, S.2015A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech.776, 235-267.
[4] Benney, D. J.1961A non-linear theory for oscillations in a parallel flow. J. Fluid Mech.10 (2), 209-236. · Zbl 0096.21201
[5] Bernal, L. P. & Roshko, A.1986Streamwise vortex structure in plane mixing layers. J. Fluid Mech.170, 499-525.
[6] Bradshaw, P., Ferriss, D. H. & Johnson, R. F.1964Turbulence in the noise-producing region of a circular jet. J. Fluid Mech.19 (04), 591-624. · Zbl 0123.42402
[7] Brandt, L.2014The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. B/Fluids47, 80-96, Enok Palm Memorial Volume. · Zbl 1297.76073
[8] Breakey, D. E. S., Jordan, P., Cavalieri, A. V. G., Nogueira, P. A., Léon, O., Colonius, T. & Rodríguez, D.2017Experimental study of turbulent-jet wave packets and their acoustic efficiency. Phys. Rev. Fluids2, 124601.
[9] Brès, G. A., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A. V. G., Towne, A., Lele, S. K., Colonius, T. & Schmidt, O. T.2018Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech.851, 83-124. · Zbl 1415.76555
[10] Butler, K. M & Farrell, B. F1992Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A4 (8), 1637-1650.
[11] Cavalieri, A. V. G. & Agarwal, A.2014Coherence decay and its impact on sound radiation by wavepackets. J. Fluid Mech.748, 399-415. · Zbl 1416.76272
[12] Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y.2011Jittering wave-packet models for subsonic jet noise. J. Sound Vib.330 (18-19), 4474-4492.
[13] Cavalieri, A. V. G., Jordan, P., Colonius, T. & Gervais, Y.2012Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech.704, 388-420. · Zbl 1246.76005
[14] Cavalieri, A. V. G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y.2013Wavepackets in the velocity field of turbulent jets. J. Fluid Mech.730, 559-592. · Zbl 1291.76280
[15] Chevalier, M., Lundbladh, A. & Henningson, D. S.2007 Simson-a pseudo-spectral solver for incompressible boundary layer flow. Tech. Rep. TRITA-MEK 2007:07. Royal Institute of Technology (KTH), Department of Mechanics, Stockholm.
[16] Coenen, W., Lesshafft, L., Garnaud, X. & Sevilla, A.2017Global instability of low-density jets. J. Fluid Mech.820, 187-207. · Zbl 1383.76397
[17] Crighton, D. G.1975Basic principles of aerodynamic noise generation. Prog. Aerosp. Sci.16 (1), 31-96.
[18] Crow, S. C. & Champagne, F. H.1971Orderly structure in jet turbulence. J. Fluid Mech.48 (3), 547-591.
[19] Cvitanović, P. & Gibson, J. F.2010Geometry of the turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr.T142, 014007.
[20] Del Alamo, J. C. & Jimenez, J.2006Linear energy amplification in turbulent channels. J. Fluid Mech.559, 205-213. · Zbl 1095.76021
[21] Ellingsen, T. & Palm, E.1975Stability of linear flow. Phys. Fluids18 (4), 487-488. · Zbl 0308.76030
[22] Farrell, B. F. & Ioannou, P. J.2012Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech.708, 149-196. · Zbl 1275.76125
[23] Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P.2013The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech.716, 189-202. · Zbl 1284.76149
[24] Gibson, J. F., Halcrow, J. & Cvitanović, P.2009Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech.638, 243-266. · Zbl 1183.76688
[25] Hall, P. & Sherwin, S.2010Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech.661, 178-205. · Zbl 1205.76085
[26] Hamilton, J. M., Kim, J. & Waleffe, F.1995Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech.287, 317-348. · Zbl 0867.76032
[27] Hwang, Y. & Cossu, C.2010Amplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number. J. Fluid Mech.643, 333-348. · Zbl 1189.76191
[28] Jeun, J., Nichols, J. W. & Jovanović, M. R.2016Input-output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids28 (4), 047101.
[29] Jordan, P. & Colonius, T.2013Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech.45 (1), 173-195. · Zbl 1359.76257
[30] Jovanovic, M. R. & Bamieh, B.2005Componentwise energy amplification in channel flows. J. Fluid Mech.534, 145-183. · Zbl 1074.76016
[31] Kawahara, G. & Kida, S.2001Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech.449, 291-300. · Zbl 0996.76034
[32] Kawahara, G., Uhlmann, M. & Van Veen, L.2012The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech.44 (1), 203-225. · Zbl 1352.76031
[33] Lajús, F. C., Sinha, A., Cavalieri, A. V. G., Deschamps, C. J. & Colonius, T.2019Spatial stability analysis of subsonic corrugated jets. J. Fluid Mech.876, 766-791. · Zbl 1421.76087
[34] Landahl, M. T.1980A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech.98 (2), 243-251. · Zbl 0428.76049
[35] Lesshafft, L., Semeraro, O., Jaunet, V., Cavalieri, A. V. G. & Jordan, P.2019Resolvent-based modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids4, 063901.
[36] Liepmann, D. & Gharib, M.1992The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech.245, 643-668.
[37] Marant, M. & Cossu, C.2018Influence of optimally amplified streamwise streaks on the Kelvin-Helmholtz instability. J. Fluid Mech.838, 478-500. · Zbl 1419.76221
[38] Mckeon, B. J. & Sharma, A. S.2010A critical-layer framework for turbulent pipe flow. J. Fluid Mech.658, 336-382. · Zbl 1205.76138
[39] Michalke, A.1964On the inviscid instability of the hyperbolic tangent velocity profile. J. Fluid Mech.19 (04), 543-556. · Zbl 0129.20302
[40] Michalke, A.1971Instabilitat eines Kompressiblen Runden Freistrahls unter Berucksichtigung des Einflusses der Strahlgrenzschichtdicke. Z. Flugwiss.19, 319-328; English translation: NASA TM 75190, 1977. · Zbl 0224.76050
[41] Michalke, A. & Fuchs, H. V.1975On turbulence and noise of an axisymmetric shear flow. J. Fluid Mech.70, 179-205. · Zbl 0312.76051
[42] Mollö-Christensen, E.1967Jet noise and shear flow instability seen from an experimenter’s viewpoint (Similarity laws for jet noise and shear flow instability as suggested by experiments). J. Appl. Mech.34, 1-7.
[43] Mollö-Christensen, E. & Narasimha, R.1960Sound emission from jets at high subsonic velocities. J. Fluid Mech.8 (01), 49-60. · Zbl 0095.21902
[44] Moser, R. D. & Rogers, M. M.1993The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence. J. Fluid Mech.247, 275-320. · Zbl 0825.76685
[45] Nogueira, P. A. S., Cavalieri, A. V. G., Jordan, P. & Jaunet, V.2019Large-scale streaky structures in turbulent jets. J. Fluid Mech.873, 211-237.
[46] Nogueira, P. A. S., Morra, P., Martini, E., Cavalieri, A. V. G. & Henningson, D. S.2020Forcing statistics in resolvent analysis: application in minimal turbulent Couette flow. J. Fluid Mech. (submitted) arXiv:2001.02576.
[47] Pickering, E., Rigas, G., Nogueira, P. A. S., Cavalieri, A. V. G., Schmidt, O. T. & Colonius, T.2020Lift-up, Kelvin-Helmholtz and Orr mechanisms in turbulent jets. J. Fluid Mech.896, A2. · Zbl 07207848
[48] Pierrehumbert, R. T. & Widnall, S. E.1982The two- and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech.114, 59-82. · Zbl 0479.76056
[49] Rayleigh, Lord1880On the stability, or instability, of certain fluid motions. Proc. London Math. Soc.9, 57-70. · JFM 12.0711.02
[50] Rogers, M. M. & Moser, R. D.1993Spanwise scale selection in plane mixing layers. J. Fluid Mech.247, 321-337.
[51] Rosenberg, K. & Mckeon, B. J.2019Efficient representation of exact coherent states of the Navier-Stokes equations using resolvent analysis. Fluid Dyn. Res.51 (1), 011401.
[52] Samimy, M., Zaman, K. B. M. Q. & Reeder, M. F.1993Effect of tabs on the flow and noise field of an axisymmetric jet. AIAA J.31 (4), 609-619.
[53] Sasaki, K., Cavalieri, A. V. G., Jordan, P., Schmidt, O. T., Colonius, T. & Brès, G. A.2017High-frequency wavepackets in turbulent jets. J. Fluid Mech.830, R2. · Zbl 1421.76206
[54] Schmid, P. J. & Henningson, D. S.2001Stability and Transition in Shear Flows, , vol. 142. Springer. · Zbl 0966.76003
[55] Schmidt, O. T., Towne, A., Colonius, T., Cavalieri, A. V. G., Jordan, P. & Brès, G. A.2017Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech.825, 1153-1181. · Zbl 1374.76074
[56] Schmidt, O. T., Towne, A., Rigas, G., Colonius, T. & Brès, G. A.2018Spectral analysis of jet turbulence. J. Fluid Mech.855, 953-982. · Zbl 1415.76293
[57] Sinha, A., Gudmundsson, K., Xia, H. & Colonius, T.2016Parabolized stability analysis of jets from serrated nozzles. J. Fluid Mech.789, 36-63.
[58] Smith, T. R., Moehlis, J. & Holmes, P.2005Low-dimensional models for turbulent plane Couette flow in a minimal flow unit. J. Fluid Mech.538, 71-110. · Zbl 1108.76031
[59] Viswanath, D.2007Recurrent motions within plane Couette turbulence. J. Fluid Mech.580, 339-358. · Zbl 1175.76074
[60] Waleffe, F.1995Transition in shear flows, nonlinear normality versus non-normal linearity. Phys. Fluids7 (12), 3060-3066. · Zbl 1026.76528
[61] Waleffe, F.1997On a self-sustaining process in shear flows. Phys. Fluids9 (4), 883-900.
[62] Waleffe, F.1998Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett.81, 4140-4143.
[63] Wedin, H. & Kerswell, R. R.2004Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech.508, 333-371. · Zbl 1065.76072
[64] Zaman, K. B. M. Q., Bridges, J. E. & Huff, D. L.2011Evolution from ‘tabs’ to ‘chevron technology’ - a review. Intl J. Aeroacoust.10 (5-6), 685-709.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.