×

Self-similar electrohydrodynamic solutions in multiple coaxial Taylor cones. (English) Zbl 1461.76551

Summary: We calculate analytically the self-similar Stokes flow driven by an externally applied electric field in a multiple coaxial Taylor cone consisting of an arbitrary number of immiscible leaky-dielectric or dielectric fluids. The proposed conical solutions open new avenues for innovative technological applications, some of which are briefly discussed.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76D45 Capillarity (surface tension) for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barrero, A., Gañán-Calvo, A.M., Dávila, J., Palacios, A. & Gómez-González, E.1999The role of the electrical conductivity and viscosity on the motions inside Taylor cones. J. Electrostat.47, 13-26.
[2] Burcham, C.L. & Saville, D.A.2002Electrohydrodynamic stability: Taylor-Melcher theory for a liquid bridge suspended in a dielectric gas. J. Fluid Mech.452, 163-187. · Zbl 1026.76020
[3] Fenn, J.B.1993Ion formation from charged droplets: roles of geometry, energy and time. J. Am. Soc. Mass. Spectr.4 (7), 524-535.
[4] Fernández De La Mora, J.2007The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech.39, 217-243. · Zbl 1296.76183
[5] Gañán-Calvo, A.M.1997Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys. Rev. Lett.79, 217-220.
[6] Gañán-Calvo, A.M., López-Herrera, J.M., Herrada, M.A., Ramos, A. & Montanero, J.M.2018Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J. Aerosol. Sci.125, 32-56.
[7] Higuera, F.J.2008Model of the meniscus of an ionic-liquid ion source. Phys. Rev. E77, 026308.
[8] Higuera, F.J.2010Numerical computation of the domain of operation of an electrospray of a very viscous liquid. J. Fluid Mech.648, 35-52. · Zbl 1189.76781
[9] Lauricella, M., Succi, S., Zussman, E., Pisignano, D. & Yarin, A.L.2020Models of polymer solutions in electrified jets and solution blowing. Rev. Mod Phys.92, 035004.
[10] Loscertales, I.G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M. & Gañán-Calvo, A.M.2002Micro/nano encapsulation via electrified coaxial liquid jets. Science295, 1695-1698.
[11] Mazurek, P., Yu, L., Gerhard, R., Wirges, W. & Skov, A.L.2016Glycerol as high-permittivity liquid filler in dielectric silicone elastomers. J. Appl. Polym. Sci.133, 44153.
[12] Melcher, J.R. & Taylor, G.I.1969Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech.1, 111-146.
[13] Ponce-Torres, A., Rebollo-Muñoz, N., Herrada, M.A., Gañán-Calvo, A.M. & Montanero, J.M.2018The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J. Fluid Mech.857, 142-172. · Zbl 1415.76764
[14] Ramos, A. & Castellanos, A.1994Conical points in liquid-liquid interfaces subjected to electric fields. Phys. Lett. A184, 268-272.
[15] Russel, W.B., Saville, D.A. & Schowalter, W.R.1991Colloidal Dispersions. Cambridge University Press. · Zbl 0789.76003
[16] Taylor, G.1964Disintegration of water drops in electric field. Proc. R. Soc. Lond. A280, 383-397. · Zbl 0119.21101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.