×

The geometrization of quantum mechanics, the nonlinear Klein-Gordon equation, Finsler gravity and phase spaces. (English) Zbl 1461.81026

Summary: The Geometrization of Quantum Mechanics proposed in this work is based on the postulate that the quantum probability density can curve the classical spacetime. It is shown that the gravitational field produced by smearing a point-mass \(M_o\) at \(r=0\) throughout all of space (in a spherically symmetric fashion) can be interpreted as the gravitational field generated by a self-gravitating anisotropic fluid droplet of mass density \(4\pi M_or^2\varphi^\ast(r)\varphi(r)\) and which is sourced by the probability cloud (associated with a spinless point-particle of mass \(M_o\)) permeating a 3-spatial domain region \(\mathcal{D}_3=\int 4\pi r^2dr\) at any time \(t\). Classically one may smear the point mass in any way we wish leading to arbitrary density configurations \(\rho(r)\). However, Quantum Mechanically this is not the case because the radial mass configuration \(M(r)\) must obey a key third order nonlinear differential equation (nonlinear extension of the Klein-Gordon equation) displayed in this work and which is the static spherically symmetric relativistic analog of the Newton-Schrödinger equation. We conclude by extending our proposal to the Lagrange-Finsler and Hamilton-Cartan geometry of (co) tangent spaces and involving the relativistic version of Bohm’s Quantum Potential. By further postulating that the quasi-probability Wigner distribution \(W(x,p)\) curves phase spaces, and by encompassing the Finsler-like geometry of the cotangent-bundle with phase space quantum mechanics, one can naturally incorporate the noncommutative and non-local Moyal star product (there are also non-associative star products as well). To conclude, Phase Space is the arena where to implement the space-time-matter unification program. It is our belief this is the right platform where the quantization of spacetime and the quantization in spacetime will coalesce.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
81V17 Gravitational interaction in quantum theory
53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
53D55 Deformation quantization, star products
81Q65 Alternative quantum mechanics (including hidden variables, etc.)
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81S10 Geometry and quantization, symplectic methods
81R60 Noncommutative geometry in quantum theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] https://en.wikipedia.org/wiki/Wigner_quasiprobability_distribution E.P. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40 (5) (1932) 749-759. J. Moyal, Quantum mechanics as a statistical theory, Proceedings of the Cambridge Philosophical Society, 45, 99-124 (1949). H.J. Groenewold, On the principles of elementary quantum mechanics. Physica. 12 (7) (1946) 405-460. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 1931). J. Ville, Theorie et Applications de la Notion de Signal Analytique, C’bles et Transmission, 2, (1948) 61-74.
[2] Bahrami, M.; Grossardt, A.; Donadi, S.; Bassi, A., The Schrödinger-Newton equation and its foundations, New J. Phys., 16, Article 115007 pp. (2014) · Zbl 1451.81381
[3] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448.; Bondi, H.; van der Burg, M.; Metzner, A., Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. R. Soc. Lond., A269, 21 (1962); Sachs, R., Gravitational waves in general relativity. 8. Waves in asymptotically flat spacetimes, Proc. Roy. Soc. Lond., A270, 103 (1962)
[4] R. Cabrera, D. Bondar, H. Rabitz, Relativistic Wigner function and consistent classical limit for spin 1/2 particles, arXiv:1107.5139.
[5] N. Callebaut, H. Verlinde, Entanglement Dynamics in 2D CFT with Boundary: Entropic origin of JT gravity and Schwarzian QM arXiv:1808.05583. A. Blommaert, T. Mertens, H. Verschelde, The Schwarzian Theory - A Wilson Line Perspective, arXiv:1806.07765. H.T. Lam, T. Mertens, G. Turiaci, H. Verlinde, Shockwave S-matrix from Schwarzian Quantum Mechanics arXiv:1804.09834. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (10) (2016) 106002.
[6] Castro, C., Nonlinear quantum mechanics as the weyl geometry of a classical statistical ensemble, Found. Phys. Lett., 4, 1, 81 (1991); Castro, C., On Weyl Geometry, Random Processes and Geometric Quantum Mechanics, Found. Phys., 22, 4, 569-615 (1992)
[7] Castro, C., Novel remarks on Point Mass sources, Firewalls, Null singularities and Gravitational Entropy, Found. Phys., 46, 14 (2016) · Zbl 1336.83012
[8] Castro, C., Exact Solutions of the Newton-Schrödinger Equation, infinite derivative gravity and Schwarzschild atoms, Phys. Astron. Int. J., 1, 4, 1-8 (2017)
[9] Castro, C., Bohm’s potential, classical/Quantum duality and Repulsive, Gravity, Phys. Lett. B (2018)
[10] Castro, C., Developments of the relativistic Bohm-Poisson Equation and Dark Energy, Theor. Phys., 4, 1, 26-39 (2019)
[11] Castro, C., Born’s reciprocal relativity theory, curved phase space, finsler geometry and the cosmological constant, Ann. Physics, 416, Article 168143 pp. (2020) · Zbl 1434.83106
[12] C. Castro, On.Asymptotic. Safety, On Asymptotic Safety Black-Hole Cosmology and the Universe As a Gravitating Vacuum State, submitted to PLB.
[13] H. Quevedo, A. Sanchez, A. Vazquez, Invariant Geometry of the Ideal Gas, arXiv:math-ph/0811.0222.; Castro Perelman, C., Thermal relativity, corrections to Black-Hole Entropy, Born’s reciprocal relativity theory and quantum gravity, Can. J. Phys. (2019), published online; Tolman, R. C., On the weight of heat and thermal equilibrium in general relativity, Phys. Rev., 35, 904 (1930); Weinhold, F., Metric geometry of equilibrium thermodynamics I, II, III, IV, V, J. Chem. Phys., 63, 2479 (1975), 2484; 2488; 2496; 65 (1976) 558; Ruppeiner, G., Thermodynamics: A Riemannian geometric model, Phys. Rev., A20, 1608 (1979); Ruppeiner, G., Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys., 67, 605 (1995), Erratum 68 (1996) 313; Quevedo, H., Geometrothermodynamics, J. Math. Phys., 48, 013506 (2007)
[14] E. Alvarez, Windows on quantum gravity arXiv:2005.09466.; Duff, M. J., Inconsistency of quantum field theory in curved space-time, (ICTP/79-80/38, Talk Presented At 2nd Oxford Conf. on Quantum Gravity, Oxford, Eng (1980)); Anselmi, D., Renormalization and causality violations in classical gravity coupled with quantum matter, JHEP, 0701, 062 (2007)
[15] D. Durr, S. Goldstein, T. Norsen, W. Struyve, Nino Zangh?, Can Bohmian mechanics be made relativistic? arXiv:1307.1714. · Zbl 1348.81341
[16] Dymnikova, I., Spherically symmetric Spacetime with Regular de Sitter Center, Gen. Relativ. Gravit., 24, 235 (1992)
[17] Einstein, A.; Infeld, L.; Hoffmann, B., The gravitational equations and the problem of motion, Ann. Math. Second Ser., 39, 1, 65-100 (1938), https://en.wikipedia.org/wiki/Black_hole_electron · JFM 64.0769.01
[18] Giulini, D.; Grossardt, A., The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields, Classical Quantum Gravity, 29, 21, Article 215010 pp. (2012); Khanapurkar, S.; Pradhan, A.; Dhruv, V.; Singh, T. P., Non-relativistic limit of Einstein-Cartan-Dirac equations, Phys. Rev., D 98, 104027 (2018) · Zbl 1266.83009
[19] Guendelman, E. I., Zero energy gauge fields and the phases of a gauge theory, Int. J. Mod. Phys., A5, 2783 (1990)
[20] Hiley, B. J., Phase space descriptions of quantum phenomena, (Khrennikov, A., Quantum Theory: Re-Consideration of Foundations, Vol. 2 (2003), Vaxjo University Press: Vaxjo University Press Sweden), 267-286; Costa Dias, N.; Nuno Prata, J., Bohmian trajectories and quantum phase space distributions, Phys. Lett., A 302, 261-272 (2002) · Zbl 0998.81039
[21] Hohmann, M.; Pfeifer, C.; N. Voicu, V., Finsler gravity action from variational completion, Phys. Rev. D, 100, Article 064035 pp. (2019)
[22] H. Lin, Cayley graphs and complexity geometry arXiv:1808.06620. L. Susskind, PiTP Lectures on Complexity and Black Holes arXiv:1808.09941. · Zbl 1411.81184
[23] M. Matone, Equivalence Postulate and Quantum Origin of Gravitation arXiv:hep-th/0005274. A. Faraggi, The Equivalence Postulate of Quantum Mechanics, Dark Energy and The Intrinsic Curvature of Elementary Particles, arXiv:1204.3185. A. Faraggi and M. Matone, Hamilton-Jacobi meet Mobius arXiv:1503.01286. E. Floyd, Modified potential and Bohm’s quantum mechanical potential, Phys. Rev. D 26, (6) (1982) 1339. E. Floyd, Action Quantization, Energy Quantiation, and Time Parametrization, arXiv:1508.00291.
[24] . Nikolic, Making nonlocal reality compatible with relativity, arXiv:1002.3226. · Zbl 1214.81034
[25] Nottale, L., Scale Relativity and Fractal Space-Time: A New Approach To Unifying Relativity and Quantum Mechanics (2011), World Scientific; Nottale, L., Fractal Space-Time and Micro-physics (1993), World Scientific · Zbl 0789.58003
[26] Pekar, S. I., Untersuchungen Uber Die Elektronentheorie Der Kristalle, 29-34 (1954), Akademie Verlag: Akademie Verlag Berlin; Ruffini, R.; Bonazzola, S., Systems of self-gravitating particles in general relativity and the concept of an equation of state, Phys. Rev., 187, 1767 (1969)
[27] A. Platania, Dynamical renormalization of black-hole spacetime arXiv:1903.10411.
[28] Poisson, E.; Israel, W., Class. Quantum Gravity, 5, L201 (1988); Poisson, E.; Israel, W., Phys. Rev., D41, 1796 (1990)
[29] Reuter, M.; Saueressig, F., Quantum Gravity and the Functional Renormalization Group : The Road Towards Asymptotic Safety (2019), Cambridge University Press; Percacci, R., An Introduction To Covariant Quantum Gravity And Asymptotic Safety (2017), World Scientific; Bonano, A.; Reuter, F., Renormalization group improved black hole spacetimes, Phys. Rev., D62, 043008 (2000)
[30] Rund, H., The Differential Geometry of Finsler Spaces (1959), Springer-Verlag; Bucataru, I.; Miron, R., Finsler-Lagrange Geometry (2007), Editura Academiei Romane: Editura Academiei Romane Bucarest; Miron, R.; Hrimiuc, D.; Shimada, H.; Sabau, S., The Geometry of Hamilton and Lagrange Spaces (2001), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston; Pfeifer, C., The Finsler spacetime framework: backgrounds for physics beyond metric geometry (2013), University of Hamburg, Thesis
[31] Santamato, E., Geometric derivation of the Schrödinger equation from classical mechanics in curved weyl spaces, Phys. Rev. D, 29, 216 (1984); Santamato, E., Statistical interpretation of the Klein-Gordon equation in terms of the space-time Weyl curvature, J. Math. Phys., 25, 2477 (1984)
[32] Spallucci, E.; Smailagic, A., Regular Black Holes from semi-classical down to Planck size, Internat. J. Modern Phys. D, 26, 7, Article 1730013 pp. (2017) · Zbl 1366.83002
[33] L. Susskind, Dear Qubitzers, GR=QM arXiv:1708.03040.
[34] R. Szabo, An Introduction to Nonassociative Physics, arXiv:1903.05673.
[35] I. Tavernelli, Quantum gravity: a geometrical perspective, arXiv:1801.05689. · Zbl 1380.81031
[36] A. Triantafyllopoulos, P. Stavrinos, Weak field equations and generalized FRW cosmology on the tangent Lorentz bundle arXiv:1903.12521. G. Minas, E.N. Saridakis, P.C. Stavrinos, and A. Triantafyllopoulos, Bounce cosmology in generalized modified gravities, arXiv:1902.06558v2 (2019). S. Ikeda, E.N. Saridakis, P.C. Stavrinos, and A. Triantafyllopoulos, Cosmology of Lorentz fiber-bundle induced scalar-tensor theories arXiv:1907.10950. · Zbl 1409.83163
[37] Dmitrii A. Trunin, Pedagogical introduction to SYK model and 2D Dilaton Gravity arXiv:2002.12187. D. Anninos and B. Muhlmann, Notes on Matrix Models arXiv:2004.01171.
[38] S. Vacaru, On axiomatic formulation of gravity and matter field theories with MDRs and Finsler-Lagrange-Hamilton geometry on (co)tangent Lorentz bundles arXiv:1801.06444. S. Vacaru, Finsler-Lagrange Geometries and Standard Theories in Physics: New Methods in Einstein and String Gravity [ arXiv:hep-th/0707.1524].
[39] Weinberg, S., Ultraviolet divergences in quantum theories of gravitation, (Hawking, S.; Israel, W., General Relativity : An Einstein Centenary Survey (1979), Cambridge University Press), 790 · Zbl 0424.53001
[40] Z. Xiao, Y. Bo, W. Chaozhen, L. Maokang, Bound states in the continuum are universal under the effect of minimal length arXiv:2004.06865. · Zbl 1450.81038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.