×

Hedging annuity risks with the age-period-cohort two-population gravity model. (English) Zbl 1461.91243

Summary: We consider the effectiveness of an illustrative annuity hedging problem in which a forward annuity predicated on one population is hedged by a position in a forward annuity predicated on another population. Our analysis makes use of the age-period-cohort two-population gravity model that takes account of the observed interdependence between the two populations’ mortality rates; it also considers the implications of parameter uncertainty, individual death or Poisson risk, and interest-rate risk for hedge effectiveness. We consider horizons of up to 20 years. For the most part, our results are robust and indicate strong hedge effectiveness, with estimates of relative risk reduction varying from about 70% in the least effective case to well over 95% in the most effective cases.

MSC:

91G05 Actuarial mathematics

Software:

LifeMetrics
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Blake, D.; Cairns, A. J. G.; Dowd, K.; Kessler., A. R., Still living with mortality: The longevity risk transfer market after one decade, British Actuarial Journal, 48 (2018)
[2] Cairns, A. J. G., A discussion of parameter and model uncertainty in insurance, Insurance: Mathematics and Economics, 27, 313-30 (2000) · Zbl 0971.62063
[3] Cairns, A. J. G., Interest rate models: An introduction (2004), Princeton NJ: Princeton University Press, Princeton NJ · Zbl 1140.91039
[4] Cairns, A. J. G., The CBD 2-factor model: A note on approximations to survivor and financial functions. Mimeo (2007), Heriot-Watt University: Heriot-Watt University, Edinburgh, Scotland
[5] Cairns, A. J. G.; Blake, D.; Dowd., K., A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, Journal of Risk and Insurance, 73, 687-718 (2006)
[6] Cairns, A. J. G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich., I., A quantitative comparison of stochastic mortality models, Insurance: Mathematics and Economics, 48, 355-67 (2009)
[7] Cairns, A. J. G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Khalaf-Allah., M., Bayesian stochastic mortality modelling for two populations, ASTIN Bulletin, 41, 1, 29-59 (2011)
[8] Cairns, A. J. G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Khalaf-Allah., M., Mortality density forecasts: an analysis of six stochastic mortality models, Insurance: Mathematics and Economics, 48, 355-67 (2011)
[9] Cairns, A. J. G.; Dowd, K.; Blake, D.; Coughlan., G. D., Longevity hedge effectiveness: A decomposition, Quantitative Finance, 14, 1, 217-35 (2014) · Zbl 1294.91072
[10] Coughlan, G. D.; Emery, S.; Kolb., J., HEAT (Hedge Effectiveness Analysis Toolkit): A consistent framework for assessing hedge effectiveness under IAS 39 and FAS 133, Journal of Derivatives Accounting, 1, 2, 221-72 (2004)
[11] Coughlan, G. D.; Epstein, D.; Ong, A.; Sinha, A.; Balevich, I.; Hevia-Portocarrera, J.; Gingrich, E.; Khalaf-Allah, M.; Joseph., P., LifeMetrics: A toolkit for measuring and managing longevity and mortality risks (2007), JPMorgan: JPMorgan, London
[12] Coughlan, G. D.; Epstein, D.; Sinha, A.; Honig., P., q-forwards: Derivatives for transferring longevity and mortality risk (2007), JPMorgan: JPMorgan, London
[13] Coughlan, G. D.; Khalaf-Allah, M.; Ye, Y.-J.; Kumar, S.; Cairns, A. J. G.; Blake, D.; Dowd., K., Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness, North American Actuarial Journal, 15, 2, 150-76 (2011)
[14] Cox, J. C.; Ingersoll, J. E.; Ross., S. A., A theory of the term structure of interest rates, Econometrica, 53, 385-407 (1985) · Zbl 1274.91447
[15] Dowd, K.; Cairns, A. J. G.; Blake, D.; Coughlan, G. D.; Khalaf-Allah., M., A gravity model of mortality rates for two related populations, North American Actuarial Journal, 15, 2, 334-56 (2011) · Zbl 1228.91032
[16] Dowd, K.; Blake, D.; Cairns., A. J. G., A computationally efficient algorithm for estimating the distribution of future annuity values under interest-rate and longevity risks, North American Actuarial Journal, 15, 2, 237-47 (2011) · Zbl 1228.91031
[17] Fabozzi, F. J., Bond markets, analysis and strategies (2000), Englewood Cliffs, NJ: Prentice Hall, Englewood Cliffs, NJ
[18] Hunt, A.; Blake., D., Identifiability, cointegration and the gravity model, Insurance: Mathematics & Economics, 78, 360-68 (2018) · Zbl 1400.91248
[19] Jacobsen, R.; Keiting, N.; Lynge., E., Long-term mortality trends behind low life expectancy of Danish women, Journal of Epidemiology and Community Health, 56, 205-8 (2002)
[20] Li, J. S. H.; Hardy., M. R., Measuring basis risk in longevity hedges, North American Actuarial Journal, 15, 2, 177-200 (2011) · Zbl 1228.91042
[21] Osmond, C., Using age, period and cohort models to estimate future mortality rates, International Journal of Epidemiology, 14, 124-29 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.