Hunt, Andrew; Blake, David On the structure and classification of mortality models. (English) Zbl 1461.91244 N. Am. Actuar. J. 25, Suppl. 1, S215-S234 (2021). Summary: Recently there has been a huge increase in the use of models that examine the structure of mortality rates across the dimensions of age, period and cohort. This article reviews the major developments in the field, provides a holistic analysis of these models, and examines the models’ similarities and differences. Specifically, the article reviews the models that have been proposed to date, investigates the structure of age/period/cohort mortality models, introduces a classification scheme for existing models, and lists the key principles a model user should consider when constructing a new model in this class. Cited in 4 Documents MSC: 91G05 Actuarial mathematics 91D20 Mathematical geography and demography Software:LifeMetrics; StMoMo PDF BibTeX XML Cite \textit{A. Hunt} and \textit{D. Blake}, N. Am. Actuar. J. 25, S215--S234 (2021; Zbl 1461.91244) Full Text: DOI Link OpenURL References: [1] Alai, D. H.; Sherris., M., Rethinking age-period-cohort mortality trend models, Scandinavian Actuarial Journal, 18, 2, 452-66 (2012) · Zbl 1401.91088 [2] Aro, H.; Pennanen., T., A user-friendly approach to stochastic mortality modeling, European Actuarial Journal, 1, S2, 151-67 (2011) [3] Baran, S.; Gáll., J.; Ispány., M.; Pap., G., Forecasting Hungarian mortality rates using the Lee-Carter methods, Acta Oeconomica, 57, 1, 1-20 (2007) [4] Booth, H.; Maindonald, J.; Smith., L., Applying Lee-Carter under conditions of variable mortality decline, Population Studies, 56, 3, 325-36 (2002) [5] Börger, M.; Fleischer., D.; Kuksin., N., Modeling the mortality trend under modern solvency regimes, ASTIN Bulletin, 44, 1, 1-38 (2013) [6] Brouhns, N.; Denuit, M. M.; Vermunt., J., A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance: Mathematics and Economics, 31, 3, 373-93 (2002) · Zbl 1074.62524 [7] Cairns, A. J. (2014) [8] Cairns, A. J.; Dowd., K., Pricing death: Frameworks for the valuation and securitization of mortality risk, ASTIN Bulletin, 36, 1, 79-120 (2006) · Zbl 1162.91403 [9] Cairns, A. J.; Blake, D.; Dowd., K., A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, Journal of Risk and Insurance, 73, 4, 687-718 (2006) [10] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Khalaf-Allah., M., Mortality density forecasts: An analysis of six stochastic mortality models, Insurance: Mathematics and Economics, 48, 3, 355-67 (2011) [11] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from England and Wales and the United States, North American Actuarial Journal, 13, 1, 1-35 (2009) [12] Callot, L.; Haldrup, N.; Lamb, M. K., Deterministic and stochastic trends in the Lee-Carter mortality model, Applied Economics Letters, 23, 7, 486-93 (2016) [13] Carstensen, B., Age-period-cohort models for the Lexis diagram, Statistics in Medicine, 26, 3018-45 (2007) [14] Carter, L. R.; Prskawetz., A. (2001) [15] Clayton, D.; Schifflers., E., Models for temporal variation in cancer rates. II: Age-period-cohort models, Statistics in Medicine, 6, 4, 469-81 (1987) [16] Continuous Mortality Investigation, Working Paper 1: An interim basis for adjusting the “92” series mortality projections for cohort effects (2002) [17] Continuous Mortality Investigation, Working Paper 20: Stochastic projection methodologies: Further progress and P-spline model features, example results and implications (2006) [18] Coughlan, G. D.; Epstein, D.; Ong, A.; Sinha, A., LifeMetrics: A toolkit for measuring and managing longevity and mortality risks. Technical document, (2007), JP Morgan Pension Advisory Group [19] Currie, I. D., Smoothing and forecasting mortality rates with P-splines (2006) [20] Currie, I. D., On fitting generalized linear and nonlinear models of mortality, Scandinavian Actuarial Journal (2014) · Zbl 1401.91123 [21] Currie, I. D.; Durbán, M.; Eilers., P., Smoothing and forecasting mortality rates, Statistical Modelling, 4, 4, 279-98 (2004) · Zbl 1061.62171 [22] Delwarde, A.; Denuit, M. M.; Eilers., P., Smoothing the Lee-Carter and Poisson log-bilinear models for mortality forecasting: A penalized log-likelihood approach, Statistical Modelling, 7, 1, 29-48 (2007) · Zbl 07257671 [23] Delwarde, A.; Denuit, M. M.; Partrat., C., Negative binomial version of the Lee-Carter model for mortality forecasting, Applied Stochastic Models in Business and Industry, 23, 5, 385-401 (2007) · Zbl 1150.91426 [24] Fienberg, S. E.; Mason., W. M., Identification and estimation of age-period-cohort models in the analysis of discrete archival data, Sociological Methodology, 10, 1-67 (1979) [25] Gavrilov, L. A.; Gavrilova., N. S., Mortality measurement at advanced ages: A study of the social security administration death master file, North American Actuarial Journal, 15, 3, 432-447 (2011) [26] Glenn, N., Cohort analysts’ futile quest: Statistical attempts to separate age, period and cohort effects, American Sociological Review, 41, 5, 900-904 (1976) [27] Haberman, S.; Renshaw., A., On age-period-cohort parametric mortality rate projections, Insurance: Mathematics and Economics, 45, 2, 255-70 (2009) · Zbl 1231.91195 [28] Haberman, S.; Renshaw., A., A comparative study of parametric mortality projection models, Insurance: Mathematics and Economics, 48, 1, 35-55 (2011) [29] Haberman, S.; Renshaw., A., Parametric mortality improvement rate modeling and projecting, Insurance: Mathematics and Economics, 50, 3, 309-33 (2012) · Zbl 1237.91129 [30] Haberman, S.; Renshaw., A., Modelling and projecting mortality improvement rates using a cohort perspective, Insurance: Mathematics and Economics, 53, 1, 150-68 (2013) · Zbl 1284.91236 [31] Hanewald, K., Explaining mortality dynamics: The role of macroeconomic fluctuations and cause of deaths trends, North American Actuarial Journal, 15, 2, 290-314 (2011) [32] Hatzopoulos, P.; Haberman., S., A parameterized approach to modeling and forecasting mortality, Insurance: Mathematics and Economics, 44, 1, 103-23 (2009) · Zbl 1156.91394 [33] Hatzopoulos, P.; Haberman., S., A dynamic parameterization modeling for the age-period-cohort mortality, Insurance: Mathematics and Economics, 49, 2, 155-74 (2011) · Zbl 1218.91082 [34] Heligman, L.; Pollard., J., The age pattern of mortality, Journal of the Institute of Actuaries, 107, 1, 49-80 (1980) [35] Hobcraft, J.; Menken, J.; Preston, S. H., Age, period and cohort effects in demography: A review, Population Index, 48, 1, 4-43 (1982) [36] Holford, T. R., The estimation of age, period and cohort effects for vital rates, Biometrics, 39, 2, 311-24 (1983) [37] Shkolnikov, V.; Barbieri, M.; Wilmoth, J. (2014), University of California: University of California, Berkeley: Max Planck Institute for Demographic Research, University of California: University of California, Berkeley [38] Hunt, A.; Blake., D., A general procedure for constructing mortality models, North American Actuarial Journal, 18, 1, 116-38 (2014) · Zbl 1412.91045 [39] Hunt, A.; Blake., D., Identifiability in age/period mortality models, Annals of Actuarial Science (2020) [40] Hunt, A.; Blake, D. (2020) [41] Hunt, A.; Villegas., A. M., Robustness and convergence in the Lee-Carter model with cohort effects, Insurance: Mathematics and Economics, 64, 186-202 (2015) · Zbl 1348.62241 [42] Hyndman, R.; Ullah., M., Robust forecasting of mortality and fertility rates: A functional data approach, Computational Statistics & Data Analysis, 51, 10, 4942-56 (2007) · Zbl 1162.62434 [43] Kleinow, T.; Cairns., A. J., Mortality and smoking prevalence: An empirical investigation in ten developed countries, British Actuarial Journal, 18, 2, 452-66 (2013) [44] Kuang, D.; Nielsen, D.; Nielsen., J. P., Forecasting with the age-period-cohort model and the extended chain-ladder model, Biometrika, 95, 4, 987-91 (2008) · Zbl 1437.62516 [45] Kuang, D.; Nielsen, B.; Nielsen., J. P., Identification of the age-period-cohort model and the extended chain-ladder model, Biometrika, 95, 4, 979-86 (2008) · Zbl 1437.62515 [46] Lee, R. D., The Lee-Carter method for forecasting mortality, with various extensions and applications, North American Actuarial Journal, 4, 1, 80-93 (2000) · Zbl 1083.62535 [47] Lee, R. D.; Carter., L. R., Modeling and forecasting U.S. mortality, Journal of the American Statistical Association, 87, 419, 659-71 (1992) · Zbl 1351.62186 [48] Lee, R. D.; Miller., T., Evaluating the performance of the Lee-Carter method for forecasting mortality, Demography, 38, 4, 537-49 (2001) [49] Li, J. S.-H.; Hardy, M. R.; Tan., K. S., Uncertainty in mortality forecasting: An extension to the classical Lee-Carter approach, ASTIN Bulletin, 39, 1, 137-64 (2009) · Zbl 1203.91113 [50] Mitchell, D.; Brockett, P. L.; Mendoza-Arriaga, R.; Muthuraman., K., Modeling and forecasting mortality rates, Insurance: Mathematics and Economics, 52, 2, 275-85 (2013) · Zbl 1284.91259 [51] Murphy, M., The “golden generations” in historical context, British Actuarial Journal, 15, S1, 151-84 (2009) [52] Murphy, M., Re-examining the dominance of birth cohort effects on mortality, Population and Development Review, 36, 2, 365-90 (2010) [53] O’Brien, R. M., Age period cohort characteristic models, Social Science Research, 29, 1, 123-39 (2000) [54] O’Brien, R. M., Constrained estimators and age-period-cohort models, Sociological Methods & Research, 40, 3, 419-52 (2011) [55] O’Hare, C.; Li., Y., Explaining young mortality, Insurance: Mathematics and Economics, 50, 1, 12-25 (2012) · Zbl 1235.91102 [56] Osmond, C., Using age, period and cohort models to estimate future mortality rates, International Journal of Epidemiology, 14, 1, 124-29 (1985) [57] Plat, R., On stochastic mortality modeling, Insurance: Mathematics and Economics, 45, 3, 393-404 (2009) · Zbl 1231.91227 [58] Reichmuth, W.; Sarferaz, S. (2008) [59] Renshaw, A.; Haberman., S., Lee-Carter mortality forecasting: A parallel generalized linear modeling approach for England and Wales mortality projections, Journal of the Royal Statistical Society: Series C (Applied Statistics), 52, 1, 119-37 (2003) · Zbl 1111.62359 [60] Renshaw, A.; Haberman., S., Lee-Carter mortality forecasting with age-specific enhancement, Insurance: Mathematics and Economics, 33, 2, 255-272 (2003) · Zbl 1103.91371 [61] Renshaw, A.; Haberman., S., On the forecasting of mortality reduction factors, Insurance: Mathematics and Economics, 32, 3, 379-401 (2003) · Zbl 1025.62041 [62] Renshaw, A.; Haberman., S., A cohort-based extension to the Lee-Carter model for mortality reduction factors, Insurance: Mathematics and Economics, 38, 3, 556-70 (2006) · Zbl 1168.91418 [63] Renshaw, A.; Haberman., S., On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modeling, Insurance: Mathematics and Economics, 42, 2, 797-816 (2008) · Zbl 1152.91598 [64] Richards, S. J., Detecting year-of-birth mortality patterns with limited data, Journal of the Royal Statistical Society: Series A (Statistics in Society), 171, 1, 279-98 (2008) [65] Rodgers, W., Estimable functions of age, period, and cohort effects, American Sociological Review, 47, 6, 774-87 (1982) [66] Sithole, T.; Haberman, S.; Verrall., R., An investigation into parametric models for mortality projections, with applications to immediate annuitants’ and life office pensioners’ data, Insurance: Mathematics and Economics, 27, 3, 285-312 (2000) · Zbl 1055.62555 [67] Tuljapurkar, S.; Li, N.; Boe., C., A universal pattern of mortality decline in the G7 countries, Nature, 405, 6788, 789-92 (2000) [68] van Berkum, F.; Antonio, K.; Vellekoop., M. H., The impact of multiple structural changes on mortality predictions, Scandinavian Actuarial Journal, in press (2014) · Zbl 1401.91221 [69] Villegas, A. M.; Millossovich, P.; Kaishev., V. K., StMoMo: An R Package for Stochastic Mortality Modelling (2015) [70] Wang, H.; Preston., S. H., Forecasting United States mortality using cohort smoking histories, Proceedings of the National Academy of Sciences of the United States of America, 106, 2, 393-98 (2009) [71] Wang, J. L.; Huang, H.; Yang, S. S.; Tsai., J. T., An optimal product mix for hedging longevity risk in life insurance companies: The immunization theory approach, Journal of Risk and Insurance, 77, 2, 473-97 (2009) [72] Willets, R., Mortality in the next millennium (1999), London, England: Staple Inn Actuarial Society, London, England [73] Willets, R., The cohort effect: Insights and explanations, British Actuarial Journal, 10, 4, 833-77 (2004) [74] Wilmoth, J. R., Variation in vital rates by age, period and cohort, Sociological Methodology, 20, 295-335 (1990) [75] Wilmoth, J. R. (1993) [76] Yang, B.; Li, J.; Balasooriya., U., Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk, Insurance: Mathematics and Economics, 62, 16-27 (2015) · Zbl 1318.91126 [77] Yang, S. S.; Yue, J. C.; Huang., H., Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models, Insurance: Mathematics and Economics, 46, 1, 254-70 (2010) · Zbl 1231.91254 [78] Yang, Y.; Fu, W. J.; Land., K. C., A methodological comparison of age-period-cohort models: The intrinsic estimator and conventional generalized linear models, Sociological Methodology, 34, 75-110 (2004) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.