×

Computational study of immersed boundary-lattice Boltzmann method for fluid-structure interaction. (English) Zbl 1462.76137

Summary: In this article, we deal with the numerical immersed boundary-lattice Boltzmann method for simulation of the fluid-structure interaction problems in 2D. We consider the interaction of incompressible, Newtonian fluid in an isothermal system with an elastic fiber, which represents an immersed body boundary. First, a short introduction to the lattice Boltzmann and immersed boundary method is presented and the combination of these two methods is briefly discussed. Then, the choice of the smooth approximation of the Dirac delta function and the discretization of the immersed body is discussed. One of the significant drawbacks of immersed boundary method is the penetrative flow through the immersed impermeable boundary. The effect of the immersed body boundary discretization is investigated using two benchmark problems, where an elastic fiber is deformed. The results indicate that the restrictions placed on the discretization in literature are not necessary.

MSC:

76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

Software:

CUDA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. R. Blair and Y. W. Kwon, Modeling of fluid-structure interaction using lattice Boltzmann and finite element methods, J. Pressure Vessel Technol., 137 (2015), 9pp.
[2] S. R. Blair and Y. W. Kwon, Modeling of fluid-structure interaction using lattice Boltzmann and finite element methods, J. Pressure Vessel Technol., 137 (2015), 9pp. · Zbl 1228.82078
[3] S. Chikatamarla, S. Ansumali and I. Karlin, Entropic lattice Boltzmann models for hydrodynamics in three dimensions, Phys. Rev. Lett., 97 (2006), 4pp. · Zbl 1124.76011
[4] B. S. H. Connell; D. K. P. Yue, Flapping dynamics of a flag in a uniform stream, J. Fluid Mech., 581, 33-67 (2007)
[5] D. d’Humières, Generalized lattice-Boltzmann equations, Prog. Astronautics Aeronautics, 159 (1994). · Zbl 1442.65305
[6] R. Fučík; P. Eichler; R. Straka; P. Pauš; J. Klinkovský; T. Oberhuber, On optimal node spacing for immersed boundary lattice Boltzmann method in 2D and 3D, Comput. Math. Appl., 77, 1144-1162 (2019)
[7] M. Geier, A. Greiner and J. G. Korvink, Cascaded digital lattice Boltzmann automata for high Reynolds number flow, Phys. Rev. E, 73 (2006). · Zbl 1443.76172
[8] M. Geier; M. Schönherr; A. Pasquili; M. Krafczyk, The cumulant lattice Boltzmann equation in three dimensions: Theory and validation, Comput. Math. Appl., 70, 507-547 (2015) · Zbl 1278.76001
[9] Z. Guo and C. Shu, Lattice Boltzmann Method and its Applications in Engineering, Advances in Computational Fluid Dynamics, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. · Zbl 1382.76191
[10] B. Kallemov; A. P. S. Bhalla; B. E. Griffith; A. Donev, An immersed boundary method for rigid bodies, Commun. Appl. Math. Comput. Sci., 11, 79-141 (2016)
[11] I. Karlin, F. Bösch and S. Chikatamarla, Gibbs’ principle for the lattice-kinetic theory of fluid dynamics, Phys. Rev. E, 90 (2014). · Zbl 1146.76441
[12] Y. Kim and C. S. Peskin, Penalty immersed boundary method for an elastic boundary with mass, Phys. Fluids, 19 (2007). · Zbl 1362.76001
[13] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Orest and E. Viggen, The Lattice Boltzmann Method: Principles and Practice, Graduate Texts in Physics, Springer, Cham, 2017. · Zbl 1225.76231
[14] T. Krüger; F. Varnik; D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Comput. Math. Appl., 61, 3485-3505 (2011) · JFM 54.0486.01
[15] H. Lewy; K. Friedrichs; R. Courant, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100, 32-74 (1928) · Zbl 1123.74309
[16] C. S. Peskin, The immersed boundary method, Acta Numer., 11, 479-517 (2002)
[17] K. N. Premnath and S. Banerjee, Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments, Phys. Rev. E, 80 (2009).
[18] K. V. Sharman; R. Straka; F. W. Tavares, New Cascaded Thermal Lattice Boltzmann Method for simulations of advection-diffusion and convective heat transfer, Internat. J. Thermal Sciences, 118, 259-277 (2017)
[19] M. C. Sukop and D. J. Thorne Jr., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, Springer, Berlin, Heidelberg, 2006. · Zbl 1343.76027
[20] K. Taira; T. Colonius, The immersed boundary method: A projection approach, J. Comput. Phys., 225, 2118-2137 (2007) · Zbl 0383.35057
[21] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. · Zbl 1327.76106
[22] F.-B. Tian; H. Luo; L. Zhu; J. C. Liao; X.-Y. Lu, An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys., 230, 7266-7283 (2011)
[23] J. Tölke, Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA, Comput. Visualization Science, 13, 29-39 (2010) · Zbl 1078.46029
[24] V. S. Vladimirov, Methods of the Theory of Generalized Functions, Analytical Methods and Special Functions, 6, Taylor & Francis, London, 2002. · Zbl 1391.76590
[25] X. Yang; X. Zhang; Z. Li; G.-W. He, A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, J. Comput. Phys., 228, 7821-7836 (2009) · Zbl 1242.74178
[26] Z.-Q. Zhang; G. R. Liu; B. C. Khoo, Immersed smoothed finite element method for two dimensional fluid-structure interaction problems, Internat. J. Numer. Methods Engrg., 90, 1292-1320 (2012) · Zbl 1242.74178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.