×

Quantum driven machine learning. (English) Zbl 1462.81063

Summary: Quantum computing is proving to be very beneficial for solving complex machine learning problems. Quantum computers are inherently excellent in handling and manipulating vectors and matrix operations. The ever increasing size of data has started creating bottlenecks for classical machine learning systems. Quantum computers are emerging as potential solutions to tackle big data related problems. This paper presents a quantum machine learning model based on quantum support vector machine (QSVM) algorithm to solve a classification problem. The quantum machine learning model is practically implemented on quantum simulators and real-time superconducting quantum processors. The performance of quantum machine learning model is computed in terms of processing speed and accuracy and compared against its classical counterpart. The breast cancer dataset is used for the classification problem. The results are indicative that quantum computers offer quantum speed-up.

MSC:

81P68 Quantum computation
68T05 Learning and adaptive systems in artificial intelligence
68Q25 Analysis of algorithms and problem complexity
68W30 Symbolic computation and algebraic computation

Software:

PMTK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Reinsel, J. Gantz, and J. Rydning, “The Digitization of the World from Edge to Core,” IDC White Paper #US44413318, 2018
[2] Tsai, C.; Lai, C.; Chao, H., Big data analytics:a survey, Journal of Big Data, 2, 21, 1-32 (2015)
[3] P. A. M. Dirac, “The Principles of Quantum Mechanics,” 4th edition, Oxford University Press, (1930/1958) · JFM 56.0745.05
[4] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge: Cambridge University Press (2000) · Zbl 1049.81015
[5] Murphy, K.P.: Machine Learning: a Probabilistic Perspective. MIT Press (2012) · Zbl 1295.68003
[6] Schuld, M.; Petruccione, ISF, An introduction to quantum machine learning, Contemp. Phys., 56, 2, 172-185 (2015) · doi:10.1080/00107514.2014.964942
[7] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum Machine Learning. Nature. 549(7671), (November 2016)
[8] Mishra, N., Kapil, M., Rakesh, H., Anand, A., Warke, A., Sarkar, S., Dutta, S., Gupta, S., Dash, A.P., Gharat, R., Chatterjee, Y., Roy, S., Raj, S., Jain, V.K., Bagaria, S., Chaudhary, S., Singh, V., Maji, R., Dalei, P., Behera, B.K., Mukhopadhyay, S., Panigrahi, P.K.: Quantum Machine Learning : A Review and Current Status Quantum Machine Learning, pp. 1-24. doi:10.13140/RG.2.2.22824.72964
[9] Wittek, P.: Quantum machine learning. Academic Press. 73-83, (2014). doi:10.1016/B978-0-12-800953-6.00020-7 · Zbl 1304.68008
[10] Lloyd, SP, Least squares quantization in pcm, IEEE Transactions on InformationTheory, 28, 129-137 (1982) · Zbl 0504.94015 · doi:10.1109/TIT.1982.1056489
[11] Lu, S.; Braunstein, S., Quantum decision tree classifier, Quantum Inf. Process, 13, 757-770 (2014) · Zbl 1291.81103 · doi:10.1007/s11128-013-0687-5
[12] Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.: Quantum machine learning: A classical perspective. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2209), (2018) · Zbl 1402.68154
[13] Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Reports Prog. Phys. 81(7), (2018)
[14] Havlicek, V., Corcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow1, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature. 567(7747), 209-212 (2019)
[15] Anguita, D.; Ridella, S.; Rivieccio, F.; Zunino, R., Quantum optimization for training support vector machines, Neural Netw., 16, 5-6, 763-770 (2003) · doi:10.1016/S0893-6080(03)00087-X
[16] Harrow, AW; Hassidim, A.; Lloyd, S., Quantum algorithm for linear systems of equations, Physical review letters, 103, 15, 150502 (2009) · doi:10.1103/PhysRevLett.103.150502
[17] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd “Quantum support vector machine for big data classification,” Phys. Rev. Lett., 113:130503, September 2014
[18] Suykens, JA; Vandewalle, J., Least squares support vector machine classifiers, Neural. Process. Lett., 9, 3, 293-300 (1999) · doi:10.1023/A:1018628609742
[19] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost “Quantum algorithms for supervised and unsupervised,” machine learning. arXiv:1307.0411, July 2013
[20] Breast Cancer Wisconsin (Diagnostic) Dataset. [Online]. Available: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
[21] IBM, IBM Quantum Experience.https://quantumexperience.ng.bluemix.net/qx/experience. Accessed March, 12, 2020
[22] IBM, Quantum information science kit.https://qiskit.org/aqua. accessed March, 2020
[23] Adebola Lamidi, “Breast Cancer Classification Using Support Vector Machine (SVM)”, Nov 23, 2018. Available:https://towardsdatascience.com/breast-cancer-classification-using-support-vector-machine-svm-a510907d4878
[24] Fine Needle Aspiration (FNA) Biopsy of the Breast. The American Cancer Society medical and editorial content team. Available:https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/breast-biopsy/fine-needle-aspiration-biopsy-of-the-breast.html
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.