×

Influence of stochastic geometric imperfections on the load-carrying behaviour of thin-walled structures using constrained random fields. (English) Zbl 1464.74045

Summary: Since structural engineering requires highly developed and optimized structures, the thickness dependency is one of the most controversially debated topics. This paper deals with stability analysis of lightweight thin structures combined with arbitrary geometrical imperfections. Generally known design guidelines only consider imperfections for simple shapes and loading, whereas for complex structures the lower-bound design philosophy still holds. Herein, uncertainties are considered with an empirical knockdown factor representing a lower bound of existing measurements. To fully understand and predict expected bearable loads, numerical investigations are essential, including geometrical imperfections. These are implemented into a stand-alone program code with a stochastic approach to compute random fields as geometric imperfections that are applied to nodes of the finite element mesh of selected structural examples. The stochastic approach uses the Karhunen-Loève expansion for the random field discretization. For this approach, the so-called correlation length \(l_c\) controls the random field in a powerful way. This parameter has a major influence on the buckling shape, and also on the stability load. First, the impact of the correlation length is studied for simple structures. Second, since most structures for engineering devices are more complex and combined structures, these are intensively discussed with the focus on constrained random fields for e.g. flange-web-intersections. Specific constraints for those random fields are pointed out with regard to the finite element model. Further, geometrical imperfections vanish where the structure is supported.

MSC:

74E35 Random structure in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
74G60 Bifurcation and buckling
74S05 Finite element methods applied to problems in solid mechanics

Software:

FEAST
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Koiter W (1970) The stability of elastic equilibrium. Tech. rep., DTIC document · Zbl 0213.27002
[2] Thompson J, Hunt G (1973) A general theory of elastic stability, vol 5. Wiley, London · Zbl 0351.73066
[3] Stefanou, G., The stochastic finite element method: past, present and future, Comput Methods Appl Mech Eng, 198, 1031-1051, (2009) · Zbl 1229.74140 · doi:10.1016/j.cma.2008.11.007
[4] Argyris, J.; Papadrakakis, M.; Stefanou, G., Stochastic finite element analysis of shells, Comput Methods Appl Mech Eng, 191, 4781-4804, (2002) · Zbl 1019.74037 · doi:10.1016/S0045-7825(02)00404-8
[5] Ghanem, R., Numerical solution of spectral stochastic finite element systems, Comput Methods Appl Mech Eng, 129, 289-303, (1996) · Zbl 0861.73071 · doi:10.1016/0045-7825(95)00909-4
[6] Ghanem, R., Ingredients for a general purpose stochastic finite elements implementation, Comput Methods Appl Mech Eng, 168, 19-34, (1999) · Zbl 0943.65008 · doi:10.1016/S0045-7825(98)00106-6
[7] Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, Berlin · Zbl 0722.73080 · doi:10.1007/978-1-4612-3094-6
[8] Kleiber M, Hien T (1992) The stochastic finite element method—basic perturbation technique and computer implementation. Whiley, New York · Zbl 0902.73004
[9] Schuëller, G., Developments in stochastic structural mechanics, Arch Appl Mech, 75, 755-773, (2006) · Zbl 1168.74398 · doi:10.1007/s00419-006-0067-z
[10] Papadopoulos, V.; Papadrakakis, M., Finite-element analysis of cylindrical panels with random initial imperfections, J Eng Mech, 130, 867-876, (2004) · doi:10.1061/(ASCE)0733-9399(2004)130:8(867)
[11] Papadopoulos, V.; Papadrakakis, M., The effect of material and thickness variability on the buckling load of shells with random initial imperfections, Comput Methods Appl Mech Eng, 194, 1405-1426, (2005) · Zbl 1137.74359 · doi:10.1016/j.cma.2004.01.043
[12] Papadopoulos, V.; Soimiris, G.; Papadrakakis, M., Buckling analysis of I-section portal frames with stochastic imperfections, Eng Struct, 47, 54-66, (2013) · doi:10.1016/j.engstruct.2012.09.009
[13] Kepple, J.; Herath, M.; Pearce, G.; Prusty, G.; Thomson, R.; Degenhardt, R., Improved stochastic methods for modelling imperfections for buckling analysis of composite cylindrical shells, Eng Struct, 100, 385-398, (2015) · doi:10.1016/j.engstruct.2015.06.013
[14] Schenk, C.; Schüller, G., Buckling analysis of cylindrical shells with random geometric imperfections, Int J Non-Linear Mech, 38, 1119-1132, (2003) · Zbl 1348.74132 · doi:10.1016/S0020-7462(02)00057-4
[15] Broggi, M.; Calvi, A.; Schuëller, G., Reliability assessment of axially compressed composite cylindrical shells with random imperfections, Int J Struct Stab Dyn, 11, 215-236, (2011) · Zbl 1271.74086 · doi:10.1142/S0219455411004063
[16] Baitsch, M.; Hartmann, D., Optimization of slender structures considering geometrical imperfections, Inverse Probl Sci Eng, 14, 623-637, (2006) · Zbl 1110.74043 · doi:10.1080/17415970600573494
[17] Ditlevsen, O., Random Field Interpolation Between Point by Point Measured Properties, 801-812, (1991), Dordrecht · doi:10.1007/978-94-011-3692-1_67
[18] Zhang, J.; Ellingwood, B., Orthogonal series expansions of random fields in reliability analysis, J Eng Mech, 120, 2660-2677, (1994) · doi:10.1061/(ASCE)0733-9399(1994)120:12(2660)
[19] Loève M (1977) Probability theory. Springer, New York · Zbl 0359.60001
[20] Oja, E.; Karhunen, J., On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix, J Math Anal Appl, 106, 69-84, (1985) · Zbl 0583.62077 · doi:10.1016/0022-247X(85)90131-3
[21] Shang, S.; Yun, G., Stochastic finite element with material uncertainties: implementation in a general purpose simulation program, Finite Elem Anal Des, 64, 65-78, (2013) · Zbl 1282.76125 · doi:10.1016/j.finel.2012.10.001
[22] Polizzi, E., Density-matrix-based algorithms for solving eigenvalue problems, Phys Rev B, 79, 115112, (2009) · doi:10.1103/PhysRevB.79.115112
[23] Polizzi E. A high-performance numerical library of solving eigenvalue problems: feast solver user’s guide. arxiv: 1203.4031
[24] Tang P, Polizzi E (2013) Feast as a subspace iteration eigensolver accelerated by approximate spectral projection. arxiv: 1302.0432
[25] Brenner C (1995) Ein Beitrag zur Zuverlässigkeit von Strukturen unter Berücksichtigung von Systemunsicherheiten mit Hilfe der Methode der stochastischen Finite Elemente. PhD thesis, Universität Innsbruck
[26] Phoon K-K (1995) Reliability-based design of foundations for transmission line structures. PhD thesis, Cornell University
[27] Taylor RL (2017) FEAP. www.ce.berkeley.edu/projects/feap/
[28] Gruttmann, F.; Wagner, W., A linear quadrilateral shell element with fast stiffness computation, Comput Methods Appl Mech Eng, 194, 4279-4300, (2005) · Zbl 1151.74418 · doi:10.1016/j.cma.2004.11.005
[29] Wagner, W.; Gruttmann, F., A simple finite rotation formulation for composite shell elements, Eng Comput, 11, 145-176, (1994) · doi:10.1108/02644409410799209
[30] Wagner, W.; Gruttmann, F., A robust non-linear mixed hybrid quadrilateral shell element, Int J Numer Methods Eng, 64, 635-666, (2005) · Zbl 1122.74526 · doi:10.1002/nme.1387
[31] Dvorkin, E.; Bathe, K-J, A continuum mechanics based four-node shell element for general non-linear analysis, Eng Comput, 1, 77-88, (1984) · doi:10.1108/eb023562
[32] Taylor R (1988) Finite element analysis of linear shell problems, ‘The mathematics of finite elements and applications VI. MAFELAP 1987’. Academic Press, London, pp 191-204
[33] Wagner, W.; Wriggers, P., A simple method for the calculation of postcritical branches, Eng Comput, 5, 103-109, (1988) · doi:10.1108/eb023727
[34] Usami, T., Effective width of locally buckled plates in compression and bending, J Struct Eng, 119, 1358-1373, (1993) · doi:10.1061/(ASCE)0733-9445(1993)119:5(1358)
[35] Hot-rolled steel plates 3mm thick or above—tolerances on dimensions and shape. EN 10029 (02 2011)
[36] Eurcode 3: design of steel structures—part 1-5: plated structural elements, EN 1993-1-5 (12 2010)
[37] Driver, R.; Kulak, G.; Elwi, A.; Kennedy, D., FE and simplified models of steel plate shear wall, J Struct Eng, 124, 121-130, (1998) · doi:10.1061/(ASCE)0733-9445(1998)124:2(121)
[38] Driver, R.; Kulak, G.; Kennedy, D.; Elwi, A., Cyclic test of four-story steel plate shear wall, J Struct Eng, 124, 112-120, (1998) · doi:10.1061/(ASCE)0733-9445(1998)124:2(112)
[39] Kennedy, D.; Kulak, G.; Driver, R., Discussion of postbuckling behavior of steel-plate shear wall under cyclic loads, J Struct Eng, 120, 2250-2251, (1994) · doi:10.1061/(ASCE)0733-9445(1994)120:7(2250)
[40] Chróścielewski, J.; Makowski, J.; Stumpf, H., Genuinely resultant shell finite elements accounting for geometric and material non-linearity, Int J Numer Methods Eng, 35, 63-94, (1992) · Zbl 0780.73075 · doi:10.1002/nme.1620350105
[41] Eurocode 3: design of steel structures, EN 1993 (2010)
[42] Reddy, J.; Chandrashekhara, K., Nonlinear analysis of laminated shells including transverse shear strains, AIAA J, 23, 440-441, (1985) · doi:10.2514/3.8932
[43] Kriegesmann, B.; Rolfes, R.; Hühne, C.; Teßmer, J.; Arbocz, J., Probabilistic design of axaxial compressed composite cylinders with geometric and loading imperfections, Int J Strucut Stab Dyn, 10, 623-644, (2010) · Zbl 1432.74133 · doi:10.1142/S0219455410003658
[44] National Aeronautics and Space Administration (1965) Buckling of thin-walled circular cylinders
[45] Hühne, C.; Rolfes, R.; Breitbach, E.; Teßmer, J., Robust design of composite cylindrical shells under axial compression—simulation and validation, Thin-Walled Struct, 46, 947-962, (2008) · doi:10.1016/j.tws.2008.01.043
[46] Arbocz, J.; Starnes, J., Future directions and challenges in shell stability analysis, Thin-Walled Struct, 40, 729-754, (2002) · doi:10.1016/S0263-8231(02)00024-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.