×

Application of the topological derivative to post-processing infrared time-harmonic thermograms for defect detection. (English) Zbl 1464.74089

Summary: This paper deals with active time-harmonic infrared thermography applied to the detection of defects inside thin plates. We propose a method to post-process raw thermograms based on the computation of topological derivatives which will produce much sharper images (namely, where contrast is highly enhanced) than the original thermograms. The reconstruction algorithm does not need information about the number of defects, nor the size or position. A collection of numerical experiments illustrates that the algorithm is highly robust against measurement errors in the thermograms, giving a good approximation of the shape, position and number of defects without the need of an iterative process.

MSC:

74J25 Inverse problems for waves in solid mechanics
74F05 Thermal effects in solid mechanics
74K20 Plates
74P99 Optimization problems in solid mechanics
80A23 Inverse problems in thermodynamics and heat transfer

Software:

FreeFem++; Gmsh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Almond, Dp; Patel, Pm, Phototermal science and techniques (1996), London: Chapman & Hall, London
[2] Amstutz, S., Sensitivity analysis with respect to a local perturbation of the material property, Asymptot Anal, 49, 87-108 (2006) · Zbl 1187.49036
[3] Ångström AJ. A new method to determine the heat conduction capacity of physical objects. Ann Physik Lpz. 1861;114.
[4] Bonnet, M.; Guzina, Bb, Sounding of finite solid bodies by way of topological derivative, Int J Numer Methods Eng, 61, 2344-2373 (2004) · Zbl 1075.74564 · doi:10.1002/nme.1153
[5] Breitenstein, O.; Warta, W.; Langenkamp, M., Lock-in thermography. Basics and use for evaluating electronic devices and materials (2003), New York: Springer, New York
[6] Carpio, A.; Rapún, Ml, Solving inhomogeneous inverse problems by topological derivative methods, Inverse Probl, 24 (2008) · Zbl 1153.35401 · doi:10.1088/0266-5611/24/4/045014
[7] Carpio, A.; Rapún, Ml, Domain reconstruction using photothermal techniques, J Comput Phys, 227, 8083-8106 (2008) · Zbl 1147.65072 · doi:10.1016/j.jcp.2008.05.014
[8] Carpio, A.; Rapún, Ml, Hybrid topological derivative and gradient-based methods for electrical impedance tomography, Inverse Probl, 28 (2012) · Zbl 1253.35215 · doi:10.1088/0266-5611/28/9/095010
[9] Carpio, A.; Rapún, Ml, Hybrid topological derivative and gradient based methods for non-destructive testing, Abstr Appl Anal, 2013 (2013) · Zbl 1470.78009 · doi:10.1155/2013/816134
[10] Carpio, A.; Rapún, Ml, Parameter identification in photothermal imaging, J Math Imaging Vis, 49, 273-288 (2014) · Zbl 1362.94005 · doi:10.1007/s10851-013-0459-y
[11] Chaabane, S.; Masmoudi, M.; Meftahi, H., Topological and shape gradient strategy for solving geometrical inverse problems, J Math Anal Appl, 400, 724-742 (2013) · Zbl 1308.35323 · doi:10.1016/j.jmaa.2012.11.044
[12] Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M., Recent advances in active infrared thermography for non-destructive testing of aerospace components, Sensors, 18 (2018) · doi:10.3390/s18020609
[13] Cimrak, I., Inverse thermal imaging in materials with nonlinear conductivity by material and shape derivative method, Math Methods Appl Sci, 34, 2303-2317 (2011) · Zbl 1242.49092 · doi:10.1002/mma.1533
[14] Colton, D.; Kress, R., Inverse acoustic and electromagnetic scattering theory (2013), New York: Springer, New York · Zbl 1266.35121
[15] Costello, Jt; Mcinerney, Cd; Bleakley, Cm; Selfe, J.; Donnelly, Ae, The use of thermal imaging in assessing skin temperature following cryotherapy: a review, J Therm Biol, 37, 103-110 (2012) · doi:10.1016/j.jtherbio.2011.11.008
[16] Cramer, Ke; Howell, Pa; Syed, Hi, Quantitative thermal imaging of aircraft structures, Proc SPIE Thermosense XVII, 2473 (1995)
[17] De Faria, Jr; Novotny, Aa; Feijóo, Ra; Taroco, E.; Padra, C., Second order topological sensitivity analysis, Int J Solids Struct, 44, 14-15, 4958-4977 (2007) · Zbl 1166.74406 · doi:10.1016/j.ijsolstr.2006.12.013
[18] Eschenauer, H.; Kobelev, V.; Schumacher, A., Bubble method for topology and shape optimization of structures, Struct Optim, 8, 42-51 (1994) · doi:10.1007/BF01742933
[19] Funes, Jf; Perales, Jm; Rapún, Ml; Vega, Jm, Defect detection from multifrequency limited data via topological sensitivity, J Math Imaging Vis, 55, 19-35 (2016) · Zbl 1337.76056 · doi:10.1007/s10851-015-0611-y
[20] Gade, R.; Moeslund, Tb, Thermal cameras and applications: a survey, Mach Vis Appl, 25, 245-262 (2014) · doi:10.1007/s00138-013-0570-5
[21] Gaussorgues, G., Infrared thermography (1994), Berlin: Springer, Berlin
[22] Geuzaine, C.; Remacle, J-F, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int J Numer Methods Eng, 79, 11, 1309-1331 (2009) · Zbl 1176.74181 · doi:10.1002/nme.2579
[23] Griesmaier, R., Multi-frequency orthogonality sampling for inverse obstacle scattering problems, Inverse Probl, 27 (2011) · Zbl 1222.78025 · doi:10.1088/0266-5611/27/8/085005
[24] Guzina, Bb; Bonnet, M., Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics, Inverse Probl, 22, 1761-1786 (2006) · Zbl 1105.76055 · doi:10.1088/0266-5611/22/5/014
[25] Guzina, Bb; Chikichev, I., From imaging to material identification: a generalized concept of topological sensitivity, J Mech Phys Solids, 55, 245-279 (2007) · Zbl 1419.74149 · doi:10.1016/j.jmps.2006.07.009
[26] Hecht, F., New development in FreeFem++, J Numer Math, 20, 251-266 (2012) · Zbl 1266.68090 · doi:10.1515/jnum-2012-0013
[27] Hettlich, F., Fréchet derivatives in inverse obstacle scattering, Inverse Probl, 11, 371-382 (1995) · Zbl 0821.35147 · doi:10.1088/0266-5611/11/2/007
[28] Higuera, M.; Perales, Jm; Rapún, M-L; Vega, Jm, Solving inverse geometry heat conduction problems by postprocessing steady thermograms, Int J Heat Mass Transf, 143 (2019) · doi:10.1016/j.ijheatmasstransfer.2019.118490
[29] Hou, S.; Huang, K.; Sølna, K.; Zhao, H., A phase and space coherent direct imaging method, J Acoust Soc Am, 125, 227-238 (2009) · doi:10.1121/1.3035835
[30] Incropera, Fp; Lavine, As; Bergman, Tl; Dewitt, Dp, Fundamentals of heat and mass transfer (2007), New York: Wiley, New York
[31] Joh, Y-D; Park, Wk, Analysis of multi-frequency subspace migration weighted by natural logarithmic function for fast imaging of two-dimensional thin, arc-like electromagnetic inhomogeneities, Comput Math Appl, 68, 1892-1904 (2014) · Zbl 1369.78356 · doi:10.1016/j.camwa.2014.10.005
[32] Kabanikhin, Si, Definitions and examples of inverse and ill-posed problems, J Inverse Ill-Posed Probl, 16, 317-357 (2008) · Zbl 1170.35100
[33] Kandlikar, Sg; Perez-Raya, I.; Raghupathi, Pa; Gonzalez-Hernandez, Jl; Dabydeen, D.; Medeiros, L.; Phatak, P., Infrared imaging technology for breast cancer detection—current status, protocols and new directions, Int J Heat Mass Transf, 108, 2303-2320 (2017) · doi:10.1016/j.ijheatmasstransfer.2017.01.086
[34] Kirsch, A., The domain derivative and two applications in inverse scattering theory, Inverse Probl, 9, 81-93 (1993) · Zbl 0773.35085 · doi:10.1088/0266-5611/9/1/005
[35] Knupp, Dc; Naveira-Cotta, Cp; Ayres, Jvc; Orlande, Hrb; Cotta, Rm, Space-variable thermophysical properties identification in nanocomposites via integral transforms, Bayesian inference and infrared thermography, Inverse Probl Sci Eng, 20, 609-637 (2012) · Zbl 1254.80002 · doi:10.1080/17415977.2012.695358
[36] Kylili, A.; Fokaides, Pa; Christou, P.; Kalogirou, Sa, Infrared thermography (IRT) applications for building diagnosis: a review, Appl Energy, 134, 531-549 (2014) · doi:10.1016/j.apenergy.2014.08.005
[37] Le Louër, F.; Rapún, Ml, Topological sensitivity for solving inverse multiple scattering problems in three-dimensional electromagnetism. Part I: one step method, SIAM J Imaging Sci, 10, 1291-1321 (2017) · Zbl 1391.35423 · doi:10.1137/17M1113850
[38] Le Louër, F.; Rapún, Ml, Detection of multiple impedance obstacle problems by non-iterative topological gradient based methods, J Comput Phys, 388, 224-251 (2019) · doi:10.1016/j.jcp.2019.03.023
[39] Litman, A.; Lesselier, D.; Santosa, F., Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level set, Inverse Probl, 14, 685-706 (1998) · Zbl 0912.35158 · doi:10.1088/0266-5611/14/3/018
[40] Mandelis, A., Diffusion waves and their uses, Phys Today, 53, 29-34 (2000) · doi:10.1063/1.1310118
[41] Martínez, A.; Güemes, Ja; Perales, Jm; Vega, Jm, SHM via topological derivative, Smart Mater Struct, 27 (2018) · doi:10.1088/1361-665X/aac78a
[42] Masmoudi, M.; Pommier, J.; Samet, B., The topological asymptotic expansion for the Maxwell equations and some applications, Inverse Probl, 21, 547-564 (2005) · Zbl 1070.35129 · doi:10.1088/0266-5611/21/2/008
[43] Meola, C., Infrarred thermography: recent advances and future trends (2012), New York: Bentham Science, New York
[44] Moghbel, M.; Mashohor, S., A review of computer assisted detection/diagnosis (CAD) in breast thermography for breast cancer detection, Artif Intell Rev, 39, 305-313 (2013) · doi:10.1007/s10462-011-9274-2
[45] Muller, J.; Siltanen, S., Linear and nonlinear inverse problems with practical applications (2012), Philadelphia: SIAM, Philadelphia · Zbl 1262.65124
[46] Novotny, Aa; Feijoo, Ra; Padra, C.; Taroco, E., Topological sensitivity analysis, Comput Methods Appl Mech Eng, 192, 803-829 (2003) · Zbl 1025.74025 · doi:10.1016/S0045-7825(02)00599-6
[47] Novotny, Aa; Sokolowski, J., Topological derivatives in shape optimization. Interaction of mechanics and mathematics (2013), Heidelberg: Springer, Heidelberg · Zbl 1276.35002
[48] Novotny, Aa; Sokolowski, J.; Zochowski, A., Topological derivatives of shape functionals. Part III: second-order method and applications, J Optim Theory Appl, 181, 1-22 (2019) · Zbl 1419.35016 · doi:10.1007/s10957-018-1420-4
[49] Oscher, S.; Fedkiw, R., Level set methods and dynamic implicit surfaces (2003), New York: Springer, New York · Zbl 1026.76001
[50] Park, W-K, Multi-frequency topological derivative for approximate shape acquisition of curve-like thin electromagnetic inhomogeneities, J Math Anal Appl, 404, 501-518 (2013) · Zbl 1341.49053 · doi:10.1016/j.jmaa.2013.03.040
[51] Park, Wk, Non-iterative imaging of thin electromagnetic inclusions from multi-frequency response matrix, Prog Electromagn Res, 106, 225-241 (2010) · doi:10.2528/PIER10052506
[52] Pena, M.; Rapún, M-L, Damage detection in two-dimensional plates via infrared thermography, Proceedings of ECCM6/ECFD7 (2018)
[53] Pena, M.; Rapún, M-L, Detecting damage in thin plates by processing infrared thermographic data with topological derivatives, Adv Math Phys, 2019 (2019) · Zbl 1419.80018 · doi:10.1155/2019/5494795
[54] Pena M, Rapún M-L. Damage detection in thin plates via time-harmonic infrared thermography. Proceedings of the 20th European Conference on Mathematics and Industry. To appear. · Zbl 1419.80018
[55] Potthast, R., Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain, J Inverse Ill-Posed Probl, 4, 67-84 (1996) · Zbl 0858.35139 · doi:10.1515/jiip.1996.4.1.67
[56] Potthast, R., A study on orthogonality sampling, Inverse Probl, 26 (2010) · Zbl 1194.35509 · doi:10.1088/0266-5611/26/7/074015
[57] Saker, Lf; Orlande, Hrb; Huang, C-H; Kanevce, Gh; Kanevce, Lp, Simultaneous estimation of the spacewise and timewise variations of mass and heat transfer coefficients in drying, Inverse Probl Sci Eng, 15, 137-150 (2007) · Zbl 1124.76056 · doi:10.1080/17415970600573981
[58] Santosa, F., A level set approach for inverse problems involving obstacles, ESAIM Control Optim Calc Var, 1, 17-33 (1996) · Zbl 0870.49016 · doi:10.1051/cocv:1996101
[59] Sokolowski, J.; Zolésio, Jp, Introduction to shape optimization. Shape sensitivity analysis (1992), Heidelberg: Springer, Heidelberg · Zbl 0761.73003
[60] Syed, Hi; Winfree, W.; Cramer, E.; Howell, Pa, Thermographic detection of corrosion in aircraft skin, Review of progress in quantitative nondestructive evaluation, 2035-2041 (1993)
[61] Usamentiaga R, Venegas P, Guerediaga J, Vega L, López I. Feature extraction and analysis for automatic characterization of impact damage in carbon fiber composites using active thermography. NDT&E International. 2013. 123-132.
[62] Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, Fg, Infrared thermography for temperature measurement and non-destructive testing, Sensors, 14, 12305-12348 (2014) · doi:10.3390/s140712305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.