×

Structure-preserving reduced basis methods for Poisson systems. (English) Zbl 1465.37095

Summary: We develop structure-preserving reduced basis methods for a large class of nondissipative problems by resorting to their formulation as Hamiltonian dynamical systems. With this perspective, the phase space is naturally endowed with a Poisson manifold structure which encodes the physical properties, symmetries, and conservation laws of the dynamics. The goal is to design reduced basis methods for the general state-dependent degenerate Poisson structure based on a two-step approach. First, via a local approximation of the Poisson tensor, we split the Hamiltonian dynamics into an “almost symplectic” part and the trivial evolution of the Casimir invariants. Second, canonically symplectic reduced basis techniques are applied to the nontrivial component of the dynamics, preserving the local Poisson tensor kernel exactly. The global Poisson structure and the conservation properties of the phase flow are retained by the reduced model in the constant-valued case and up to errors in the Poisson tensor approximation in the state-dependent case. A priori error estimates for the solution of the reduced system are established. A set of numerical simulations is presented to corroborate the theoretical findings.

MSC:

37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
37M05 Simulation of dynamical systems
65P10 Numerical methods for Hamiltonian systems including symplectic integrators

Software:

GEMPIC
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] AbMa78 R. Abraham and J. E. Marsden, Foundations of mechanics, 2nd ed., Addison-Wesley Publishing Company, Inc., Redwood City, CA, 1987.
[2] Afkham, Babak Maboudi; Hesthaven, Jan S., Structure preserving model reduction of parametric Hamiltonian systems, SIAM J. Sci. Comput., 39, 6, A2616-A2644 (2017) · Zbl 1379.78019 · doi:10.1137/17M1111991
[3] Arnol\cprime d, V. I., On the topology of three-dimensional steady flows of an ideal fluid., J. Appl. Math. Mech., 30, 223-226 (1966) · Zbl 0156.23002 · doi:10.1016/0021-8928(66)90070-0
[4] Arnol\cprime d, V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics 60, xvi+508 pp. (1989), Springer-Verlag, New York · Zbl 0692.70003 · doi:10.1007/978-1-4757-2063-1
[5] Ascher, Uri M.; McLachlan, Robert I., Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48, 3-4, 255-269 (2004) · Zbl 1038.65138 · doi:10.1016/j.apnum.2003.09.002
[6] Ascher, U. M.; McLachlan, R. I., On symplectic and multisymplectic schemes for the KdV equation, J. Sci. Comput., 25, 1-2, 83-104 (2005) · Zbl 1203.65277 · doi:10.1007/s10915-004-4634-6
[7] Barrault, Maxime; Maday, Yvon; Nguyen, Ngoc Cuong; Patera, Anthony T., An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339, 9, 667-672 (2004) · Zbl 1061.65118 · doi:10.1016/j.crma.2004.08.006
[8] Betsch, Peter; Schiebl, Mark, Energy-momentum-entropy consistent numerical methods for large-strain thermoelasticity relying on the GENERIC formalism, Internat. J. Numer. Methods Engrg., 119, 12, 1216-1244 (2019) · doi:10.1002/nme.6089
[9] Binev, Peter; Cohen, Albert; Dahmen, Wolfgang; DeVore, Ronald; Petrova, Guergana; Wojtaszczyk, Przemyslaw, Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal., 43, 3, 1457-1472 (2011) · Zbl 1229.65193 · doi:10.1137/100795772
[10] Brandts, J. H., Matlab code for sorting real Schur forms, Numer. Linear Algebra Appl., 9, 3, 249-261 (2002) · Zbl 1071.65500 · doi:10.1002/nla.274
[11] Buffa, Annalisa; Maday, Yvon; Patera, Anthony T.; Prud’homme, Christophe; Turinici, Gabriel, \it A prioriconvergence of the greedy algorithm for the parametrized reduced basis method, ESAIM Math. Model. Numer. Anal., 46, 3, 595-603 (2012) · Zbl 1272.65084 · doi:10.1051/m2an/2011056
[12] Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul, Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM J. Sci. Comput., 37, 2, B153-B184 (2015) · Zbl 1320.65193 · doi:10.1137/140959602
[13] Chartier, Philippe; Faou, Erwan; Murua, Ander, An algebraic approach to invariant preserving integrators: the case of quadratic and Hamiltonian invariants, Numer. Math., 103, 4, 575-590 (2006) · Zbl 1100.65115 · doi:10.1007/s00211-006-0003-8
[14] Chaturantabut, Saifon; Sorensen, Danny C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169 · doi:10.1137/090766498
[15] Chaturantabut, Saifon; Sorensen, Danny C., A state space error estimate for POD-DEIM nonlinear model reduction, SIAM J. Numer. Anal., 50, 1, 46-63 (2012) · Zbl 1237.93035 · doi:10.1137/110822724
[16] Clebsch, A., Ueber die Integration der hydrodynamischen Gleichungen, J. Reine Angew. Math., 56, 1-10 (1859) · ERAM 056.1468cj · doi:10.1515/crll.1859.56.1
[17] Cohen, Albert; DeVore, Ronald, Kolmogorov widths under holomorphic mappings, IMA J. Numer. Anal., 36, 1, 1-12 (2016) · Zbl 1336.41010 · doi:10.1093/imanum/dru066
[18] Cohen, David; Hairer, Ernst, Linear energy-preserving integrators for Poisson systems, BIT, 51, 1, 91-101 (2011) · Zbl 1216.65175 · doi:10.1007/s10543-011-0310-z
[19] Dahlquist, Germund, Stability and error bounds in the numerical integration of ordinary differential equations, Kungl. Tekn. H\"{o}gsk. Handl. Stockholm, 130, 87 pp. (1959) · Zbl 0085.33401
[20] Darb82 G. Darboux, Sur le probl\`eme de Pfaff, Bull. Sci. Math. Astronomiques 6 (1882), no. 1, 14-36.
[21] DeVore, Ronald A., The theoretical foundation of reduced basis methods. Model reduction and approximation, Comput. Sci. Eng. 15, 137-168 (2017), SIAM, Philadelphia, PA · doi:10.1137/1.9781611974829.ch3
[22] Ergen\c{c}, T.; Karas\"{o}zen, B., Poisson integrators for Volterra lattice equations, Appl. Numer. Math., 56, 6, 879-887 (2006) · Zbl 1110.65115 · doi:10.1016/j.apnum.2005.06.009
[23] Fa\ss bender, H.; Ikramov, Kh. D., Some observations on the Youla form and conjugate-normal matrices, Linear Algebra Appl., 422, 1, 29-38 (2007) · Zbl 1126.15012 · doi:10.1016/j.laa.2006.09.004
[24] Giraud, Luc; Langou, Julien; Rozlo\v{z}n\'{\i }k, Miroslav; van den Eshof, Jasper, Rounding error analysis of the classical Gram-Schmidt orthogonalization process, Numer. Math., 101, 1, 87-100 (2005) · Zbl 1075.65060 · doi:10.1007/s00211-005-0615-4
[25] Grimm, V.; Quispel, G. R. W., Geometric integration methods that preserve Lyapunov functions, BIT, 45, 4, 709-723 (2005) · Zbl 1094.65070 · doi:10.1007/s10543-005-0034-z
[26] Gronwall, T. H., Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. of Math. (2), 20, 4, 292-296 (1919) · JFM 47.0399.02 · doi:10.2307/1967124
[27] Hairer, Ernst; Lubich, Christian; Wanner, Gerhard, Geometric numerical integration, Springer Series in Computational Mathematics 31, xviii+644 pp. (2006), Springer-Verlag, Berlin · Zbl 1094.65125
[28] Kolmogoroff, A., \"{U}ber die beste Ann\"{a}herung von Funktionen einer gegebenen Funktionenklasse, Ann. of Math. (2), 37, 1, 107-110 (1936) · Zbl 0013.34903 · doi:10.2307/1968691
[29] KKMS17 M. Kraus, K. Kormann, P. J. Morrison, and E. Sonnendr\"ucker, GEMPIC: geometric electromagnetic particle-in-cell methods, J. Plasma Phys. 83 (2017), no. 4, 905830401.
[30] Lall, Sanjay; Krysl, Petr; Marsden, Jerrold E., Structure-preserving model reduction for mechanical systems, Phys. D, 184, 1-4, 304-318 (2003) · Zbl 1041.70011 · doi:10.1016/S0167-2789(03)00227-6
[31] Lie, Sophus, Theorie der Transformationsgruppen I, Math. Ann., 16, 4, 441-528 (1880) · JFM 12.0292.01 · doi:10.1007/BF01446218
[32] Littlejohn, Robert G., A guiding center Hamiltonian: a new approach, J. Math. Phys., 20, 12, 2445-2458 (1979) · Zbl 0444.70020 · doi:10.1063/1.524053
[33] Marsden, J., Darboux’s theorem fails for weak symplectic forms, Proc. Amer. Math. Soc., 32, 590-592 (1972) · Zbl 0232.58003 · doi:10.2307/2037864
[34] Marsden, Jerrold E.; Ratiu, Tudor S., Introduction to mechanics and symmetry, Texts in Applied Mathematics 17, xviii+582 pp. (1999), Springer-Verlag, New York · Zbl 0933.70003 · doi:10.1007/978-0-387-21792-5
[35] Marsden, Jerrold; Weinstein, Alan, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Phys. D, 7, 1-3, 305-323 (1983) · Zbl 0576.58008 · doi:10.1016/0167-2789(83)90134-3
[36] McLachlan, Robert I.; Quispel, G. R. W.; Robidoux, Nicolas, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357, 1754, 1021-1045 (1999) · Zbl 0933.65143 · doi:10.1098/rsta.1999.0363
[37] Morrison, P. J.; Vanneste, J., Weakly nonlinear dynamics in noncanonical Hamiltonian systems with applications to fluids and plasmas, Ann. Physics, 368, 117-147 (2016) · Zbl 1377.37088 · doi:10.1016/j.aop.2016.02.003
[38] Natale, Andrea; Cotter, Colin J., A variational \(H(\text{div})\) finite-element discretization approach for perfect incompressible fluids, IMA J. Numer. Anal., 38, 3, 1388-1419 (2018) · Zbl 1408.65069 · doi:10.1093/imanum/drx033
[39] Olver, Peter J., Darboux’s theorem for Hamiltonian differential operators, J. Differential Equations, 71, 1, 10-33 (1988) · Zbl 0651.47036 · doi:10.1016/0022-0396(88)90036-8
[40] Peng, Liqian; Mohseni, Kamran, Symplectic model reduction of Hamiltonian systems, SIAM J. Sci. Comput., 38, 1, A1-A27 (2016) · Zbl 1330.65193 · doi:10.1137/140978922
[41] Salam, Ahmed, On theoretical and numerical aspects of symplectic Gram-Schmidt-like algorithms, Numer. Algorithms, 39, 4, 437-462 (2005) · Zbl 1111.65038 · doi:10.1007/s11075-005-0963-2
[42] Weinstein, Alan, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., 6, 329-346 (1971) (1971) · Zbl 0213.48203 · doi:10.1016/0001-8708(71)90020-X
[43] Weinstein, Alan, The local structure of Poisson manifolds, J. Differential Geom., 18, 3, 523-557 (1983) · Zbl 0524.58011
[44] Wirtz, D.; Sorensen, D. C.; Haasdonk, B., A posteriori error estimation for DEIM reduced nonlinear dynamical systems, SIAM J. Sci. Comput., 36, 2, A311-A338 (2014) · Zbl 1312.65127 · doi:10.1137/120899042
[45] Yan, Jue; Shu, Chi-Wang, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal., 40, 2, 769-791 (2002) · Zbl 1021.65050 · doi:10.1137/S0036142901390378
[46] Youla, D. C., A normal form for a matrix under the unitary congruence group, Canadian J. Math., 13, 694-704 (1961) · Zbl 0103.25201 · doi:10.4153/CJM-1961-059-8
[47] \endbiblist
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.