×

An efficient method for mitigating longevity value-at-risk. (English) Zbl 1465.91097

Given the centrality of the s-year value-at-risk in the context of Solvency capital requirements, the paper provides a method to formulate a value hedge in order to minimize the value-at-risk of the hedged position over a horizon of s years. In particular, this study concerns a hedging strategy involving stochastic mortality models that can be expressed in a state-space form. After presenting the general state-space form of stochastic mortality models, the study focuses in details on the liability being hedged and the hedging instruments, just within a stochastic scenario where the mortality model is expressed in a state-space form. Then, the hedging strategy is in-depth and illustrated by means of three example models that are commonly used in practice. Moreover, the evaluation of the longevity hedge is provided, underlining the progress achieved throughout the simulative methodologies proposed in the paper. Real-data illustrations show the practical application of the results obtained.

MSC:

91G05 Actuarial mathematics
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Ahmadi, S. S.; Gaillardetz, P., Two factor stochastic mortality modeling with generalized hyperbolic distribution, Journal of Data Science, 12, 1, 1-18 (2014)
[2] Azzalini, A.; Capitanio., A., Statistical applications of the multivariate skew normal distribution, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 61, 3, 579-602 (1999) · Zbl 0924.62050
[3] Azzalini, A.; Capitanio., A., Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 65, 2, 367-389 (2003) · Zbl 1065.62094
[4] Barrieu, P.; Bensusan, H.; Karoui, N. El; Hillairet, C.; Loisel, S.; Ravanelli, C.; Salhi., Y., Understanding, modelling and managing longevity risk: Key issues and main challenges, Scandinavian Actuarial Journal, 2012, 3, 203-31 (2012) · Zbl 1277.91073
[5] Bauer, D.; Börger., M.; Ruß., J., On the pricing of longevity-linked securities, Insurance: Mathematics and Economics, 46, 1, 139-149 (2010) · Zbl 1231.91142
[6] Blake, D.; Boardman, T.; Cairns., A., Sharing longevity risk: Why governments should issue longevity bonds, North American Actuarial Journal, 18, 1, 258-77 (2014) · Zbl 1412.91033
[7] Börger, M., Deterministic shock vs. stochastic Value-at-Risk-An analysis of the Solvency II standard model approach to longevity risk, Blätter der DGVFM, 31, 2, 225-59 (2010) · Zbl 1232.91341
[8] Börger, M.; Fleischer, D.; Kuksin., N., Modeling the mortality trend under modern solvency regimes, ASTIN Bulletin, 44, 1, 1-38 (2014)
[9] Boyer, M. M.; Mejza, J.; Stentoft., L., Measuring longevity risk: An application to the Royal Canadian Mounted Police pension plan, Risk Management and Insurance Review, 17, 1, 37-59 (2014)
[10] Cairns, A. J. G., Modelling and management of longevity risk: Approximations to survivor functions and dynamic hedging, Insurance: Mathematics and Economics, 49, 3, 438-53 (2011) · Zbl 1230.91068
[11] Cairns, A. J. G., Robust hedging of longevity risk, Journal of Risk and Insurance, 80, 3, 621-48 (2013)
[12] Cairns, A. J. G.; Blake, D.; Dowd., K., A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, Journal of Risk and Insurance, 73, 4, 687-718 (2006)
[13] Cairns, A. J. G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich., I., A quantitative comparison of stochastic mortality models using data from England and Wales and the United States, North American Actuarial Journal, 13, 1-35 (2009)
[14] Coughlan, G. D.; Khalaf-Allah, M.; Ye, Y.; Kumar, S.; Cairns, A. J.; Blake, D.; Dowd., K., Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness, North American Actuarial Journal, 15, 2, 150-76 (2011)
[15] Dowd, K.; Cairns, A. J. G.; Blake., D., Mortality-dependent financial risk measures, Insurance: Mathematics and Economics, 38, 3, 427-40 (2006) · Zbl 1168.91411
[16] Fung, M. C.; Peters, G. W.; Shevchenko., P. V., A unified approach to mortality modelling using state-space framework: Characterisation, identification, estimation and forecasting, Annals of Actuarial Science, 11, 343-89 (2017)
[17] Graziani, G., Longevity risk - A fine balance, Institutional Investor Journals: Special Issue on Pension and Longevity Risk Transfer for Institutional Investors, 2014, 35-37 (2014)
[18] Henze, N.; Zirkler, B., A class of invariant consistent tests for multivariate normality, Communications in Statistics - Theory and Methods, 19, 10, 3595-3617 (1990) · Zbl 0738.62068
[20] Hunt, A.; Blake., D., A general procedure for constructing mortality models, North American Actuarial Journal, 18, 1, 116-38 (2014) · Zbl 1412.91045
[21] Hunt, A.; Blake, D., Forward mortality rates in discrete time I: Calibration and securities pricing (2015), Pensions Institute Discussion Paper PI-1511
[22] Lee, R. D.; Carter., L. R., Modeling and forecasting U.S. mortality, Journal of the American Statistical Association, 87, 419, 659-71 (1992) · Zbl 1351.62186
[23] Levantesi, S.; Menzietti., M., Maximum market price of longevity risk under solvency regimes: The case of Solvency II, Risks, 5, 2, 29 (2017)
[24] Li, J. S.-H.; Hardy., M. R., Measuring basis risk in longevity hedges, North American Actuarial Journal, 15, 2, 177-200 (2011) · Zbl 1228.91042
[25] Li, J. S.-H.; Luo., A., Key q-duration: A framework for hedging longevity risk, ASTIN Bulletin, 42, 2, 413-52 (2012) · Zbl 1390.91194
[26] Li, J. S.-H.; Zhou, R.; Hardy., M., A step-by-step guide to building two-population stochastic mortality models, Insurance: Mathematics and Economics, 63, 121-34 (2015) · Zbl 1348.91164
[27] Lin, T.; Tsai., C. C. L., On the mortality/longevity risk hedging with mortality immunization, Insurance: Mathematics and Economics, 53, 3, 580-96 (2013) · Zbl 1290.91093
[28] Liu, Y.; Li., J. S.-H., It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk, Insurance: Mathematics and Economics, 70, 301-19 (2016) · Zbl 1371.91103
[29] Liu, Y.; Li., J. S.-H., The locally linear Cairns-Blake-Dowd model: A note on delta-nuga hedging of longevity risk, ASTIN Bulletin, 47, 1, 79-151 (2017) · Zbl 1390.91198
[30] Liu, Y.; Li., J. S.-H., A strategy for hedging risks associated with period and cohort effects using q-forwards, Insurance: Mathematics and Economics, 78, 267-85 (2018) · Zbl 1398.91344
[31] Loeys, J.; Panigirtzoglou, N.; Ribeiro., R. (2007)
[32] Michaelson, A.; Mulholland., J., Strategy for increasing the global capacity for longevity risk transfer: Developing transactions that attract capital markets investors, Journal of Alternative Investments, 17, 18-27 (2014)
[33] Ngai, A.; Sherris., M., Longevity risk management for life and variable annuities: The effectiveness of static hedging using longevity bonds and derivatives, Insurance: Mathematics and Economics, 49, 1, 100-114 (2011)
[34] Olivieri, A.; Pitacco., E., Stochastic mortality: The impact on target capital, ASTIN Bulletin, 39, 2, 541-63 (2009) · Zbl 1179.91108
[35] Plat, R., On stochastic mortality modeling. Insurance: Mathematics and Economics 45:393-404. Plat, R. 2009b. Stochastic portfolio specific mortality and the quantification of mortality basis risk, Insurance: Mathematics and Economics, 45, 1, 123-32 (2009) · Zbl 1231.91226
[36] Plat, R., One-year value-at-risk for longevity and mortality, Insurance: Mathematics and Economics, 49, 3, 462-70 (2011)
[37] Renshaw, A. E.; Haberman., S., Lee-Carter mortality forecasting with age-specific enhancement, Insurance: Mathematics and Economics, 33, 2, 255-72 (2003) · Zbl 1103.91371
[38] Richards, S. J.; Currie, I. D.; Ritchie., G., A Value-at-Risk framework for longevity trend risk, British Actuarial Journal, 19, 1, 116-39 (2014)
[39] Theodossiou, P., Financial data and the skewed generalized t distribution, Management Science, 44, 12-1, 1650-61 (1998) · Zbl 1001.91051
[40] Thode, H. C., Testing for normality (2002), CRC Press · Zbl 1032.62040
[41] Wang, C. W.; Huang, H. C.; Liu., I. C., A quantitative comparison of the Lee-Carter model under different types of non-Gaussian innovations, The Geneva Papers on Risk and Insurance - Issues and Practice, 36, 4, 675-96 (2011)
[42] Zhang, J.; Tan, K. S.; Weng., C. (2017)
[43] Zhou, K. Q.; Li., J. S.-H., Dynamic longevity hedging in the presence of population basis risk: A feasibility analysis from technical and economic perspectives, Journal of Risk and Insurance, 84, Suppl. 1, 417-37 (2017)
[44] Zhou, K. Q.; Li., J. S.-H., Improving the distinction between sampling risk and trend risk: A Fay-Herriot extension of stochastic mortality models, Paper presented at the 13th International Longevity Risk and Capital Markets Solutions Conference (2017), Taipei, Taiwan, ROC
[45] Zhou, K. Q.; Li., J. S.-H., Longevity Greeks: What do insurers and capital market investors need to know?, North American Actuarial Journal (2019)
[46] Zhou, R.; Wang, Y.; Kaufhold, K.; Li, J. S.-H.; Tan., K. S., Modeling period effects in multi-population mortality models: Applications to Solvency II, North American Actuarial Journal, 18, 1, 150-67 (2014) · Zbl 1412.91060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.