×

Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis. (English) Zbl 1466.37047

Summary: In this paper, a four-dimensional conservative system of Euler equations producing the periodic orbit is constructed and studied. The reason that a conservative system often produces periodic orbit has rarely been studied. By analyzing the Hamiltonian and Casimir functions, three invariants of the conservative system are found. The complete integrability is proved to be the mechanism that the system generates the periodic orbits. The mechanism route from periodic orbit to conservative chaos is found by breaking the conservation of Casimir energy and the integrability through which a chaotic Hamiltonian system is built. The observed chaos is not excited by saddle or center equilibria, so the system has hidden dynamics. It is found that the upgrade in the Hamiltonian energy level violates the order of dynamical behavior and transitions from a low or regular state to a high or an irregular state. From the energy bifurcation associated with different energy levels, rich coexisting orbits are discovered, i.e., the coexistence of chaotic orbits, quasi-periodic orbits, and chaotic quasi-periodic orbits. The coincidence between the two-dimensional diagram of maximum Lyapunov exponents and the bifurcation diagram of Hamiltonian energy is observed. Finally, field programmable gate array implementation, a challenging task for the chaotic Hamiltonian conservative system, is designed to be a Hamiltonian pseudo-random number generator.
©2021 American Institute of Physics

MSC:

37J30 Obstructions to integrability for finite-dimensional Hamiltonian and Lagrangian systems (nonintegrability criteria)
37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems
37J25 Stability problems for finite-dimensional Hamiltonian and Lagrangian systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Qi, G.; Liang, X., Nonlinear Dyn., 86, 1095-1106 (2016) · doi:10.1007/s11071-016-2949-0
[2] Qi, G.; Zhang, J., Chaos Soliton. Fract., 99, 7-15 (2017) · Zbl 1373.37098 · doi:10.1016/j.chaos.2017.03.044
[3] Qi, G.; Liang, X., Int. J. Bifurcat. Chaos, 27, 1750180 (2017) · Zbl 1379.37076 · doi:10.1142/S0218127417501802
[4] Qi, G., Appl. Math. Model., 51, 686-697 (2017) · Zbl 1480.70036 · doi:10.1016/j.apm.2017.07.025
[5] Qi, G., Nonlinear Dyn., 95, 2063-2077 (2019) · Zbl 1432.70020 · doi:10.1007/s11071-018-4676-1
[6] Shamolin, M. V., J. Math. Sci., 165, 743-754 (2010) · Zbl 1288.70001 · doi:10.1007/s10958-010-9838-8
[7] Qi, G.; Hu, J., Commun. Nonlinear Sci. Numer. Simul., 84, 105171 (2020) · Zbl 1460.70024 · doi:10.1016/j.cnsns.2020.105171
[8] Kosmann-Schwarzbach, Y.; GrammaticosK, B.; Tamizhmani, M., Integrability of Nonlinear Systems (2004), Springer: Springer, Berlin · Zbl 1034.93002
[9] Howland, R. A., Intermediate Dynamics: A Linear Algebraic Approach (2006), Springer: Springer, Boston
[10] Reichl, L. E., The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations (2004), Springer: Springer, New York · Zbl 1061.70001
[11] Wiggins, S., Global Bifurcations and Chaos (1988), Springer: Springer, New York · Zbl 0661.58001
[12] Chicone, C., Ordinary Differential Equations with Applications (2006), Springer: Springer, New York · Zbl 1120.34001
[13] Rudiger, S., From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis (1988), Elsevier: Elsevier, Amsterdam · Zbl 0652.34059
[14] Yang, Y.; Qi, G., Chaos Soliton. Fract., 108, 187-195 (2018) · Zbl 1390.34117 · doi:10.1016/j.chaos.2018.01.035
[15] Qi, G.; Hu, J., Int. J. Bifurcat. Chaos, 27, 1750216-1-18 (2017) · Zbl 1382.34058 · doi:10.1142/S0218127417502169
[16] Pham, V.; Volos, C.; Jafari, S.; Kapitaniak, T., Nonlinear Dyn., 87, 2001-2010 (2016) · doi:10.1007/s11071-016-3170-x
[17] Cang, S.; Li, Y.; Zhang, R.; Wang, Z., Nonlinear Dyn., 95, 381-390 (2019) · Zbl 1439.34045 · doi:10.1007/s11071-018-4570-x
[18] Lakshmanan, M.; Rajasekar, S., Nonlinear Dynamics-Integrability, Chaos, and Patterns (2012), Springer: Springer, Berlin · Zbl 1038.37001
[19] Jafari, S.; Sprott, J. C., Chaos Soliton. Fract., 57, 79-84 (2013) · Zbl 1355.37056 · doi:10.1016/j.chaos.2013.08.018
[20] Jafari, S.; Sprott, J. C.; Pham, V.-T.; Volos, C.; Li, C., Nonlinear Dyn., 86, 1-10 (2016) · doi:10.1007/s11071-016-2968-x
[21] Pham, V.; Volos, C.; Jafari, S.; Kapitaniak, T., AEU-Int. J. Electron. Commun., 78, 220-227 (2017) · doi:10.1016/j.aeue.2017.04.012
[22] Hoover, W. G., Phys. Rev. E, 51, 759-760 (1995) · doi:10.1103/PhysRevE.51.759
[23] Lakshmanan, M. D.; Muthuswamy, Symmetries and Singularity Structures, Part II (1990), Springer: Springer, Berlin
[24] Xing, J. T., Energy Flow of Nonlinear Dynamical Systems (2015), Springer: Springer, Cham · Zbl 1321.37002
[25] Gao, J.; Cao, Y.; Tung, W. W.; Jing, H., Multiscale Analysis of Complex Time Series-Integration of Chaos and Random Fractal Theory, and Beyond (2007), Wiley: Wiley, New York · Zbl 1156.37001
[26] Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N. V.; Leonov, G. A.; Prasad, A., Phys. Rep., 637, 1-50 (2016) · Zbl 1359.34054 · doi:10.1016/j.physrep.2016.05.002
[27] Xiong, W.; Chen, G., 82-85 (2011), IEEE
[28] Xiong, W.; Chen, G., Commun. Nonlinear Sci. Numer. Simul., 17, 1264-1272 (2012) · doi:10.1016/j.cnsns.2011.07.017
[29] Bao, B.; Qian, H.; Xu, Q.; Chen, M.; Wang, J.; Yu, Y., Front. Comput. Neurosci., 11, 81 (2017) · doi:10.3389/fncom.2017.00081
[30] Zhou, P.; Ke, M.; Zhu, P., Complexity, 2018, 1-7 (2018) · Zbl 1398.34083 · doi:10.1155/2018/4192824
[31] Zhou, C.; Yang, C.; Xu, D.; Chen, C., Mod. Phys. Lett. B, 33, 1950026 (2019) · doi:10.1142/S021798491950026X
[32] Zhou, C.; Li, Z.; Xie, F., Eur. Phys. J. Plus, 134, 73 (2019) · doi:10.1140/epjp/i2019-12434-4
[33] Pelino, V.; Maimone, F.; Pasini, A., Chaos Soliton. Fract., 64, 67-77 (2014) · Zbl 1348.37092 · doi:10.1016/j.chaos.2013.09.005
[34] Gong, L.; Deng, C.; Pan, S.; Zhou, N., Opt. Laser Technol., 103, 48-58 (2018) · doi:10.1016/j.optlastec.2018.01.007
[35] Amani, H. R.; Yaghoobi, M., Multimed. Tools Appl., 78, 21537-21556 (2019) · doi:10.1007/s11042-018-6989-y
[36] Li, P.; Xu, J.; Mou, J.; Yang, F., EURASIP J. Image Video Process., 2019, 22-33 (2019) · doi:10.1186/s13640-018-0402-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.