×

Discrete equivalence of non-positive at infinity plane valuations. (English) Zbl 1468.14009

Summary: Non-positive at infinity valuations are a class of real plane valuations which have a nice geometrical behavior. They are divided in three types. We study the dual graphs of non-positive at infinity valuations and give an algorithm for obtaining them. Moreover we compare these graphs attending the type of their corresponding valuation.

MSC:

14C20 Divisors, linear systems, invertible sheaves
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
13A18 Valuations and their generalizations for commutative rings
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Abhyankar, S., Local uniformization on algebraic surfaces over ground fields of characteristic \(p\ne 0\), Ann. Math., 2, 63, 491-526 (1956) · Zbl 0108.16803 · doi:10.2307/1970014
[2] Campillo, A.; Piltant, O.; Reguera, A., Curves and divisors on surfaces associated to plane curves with one place at infinity, Proc. Lond. Math. Soc., 84, 559-580 (2002) · Zbl 1074.14505 · doi:10.1112/S0024611502013394
[3] Ciliberto, C.; Farnik, M.; Küronya, A.; Lozovanu, V.; Roé, J.; Shramov, C., Newton-Okounkov bodies sprouting on the valuative tree, Rend. Circ. Mat. Palermo, 2, 66, 161-194 (2017) · Zbl 1386.14035 · doi:10.1007/s12215-016-0285-3
[4] Cutkosky, SD; Ein, L.; Lazarsfeld, R., Positivity and complexity of ideal sheaves, Math. Ann., 321, 2, 213-234 (2001) · Zbl 1029.14022 · doi:10.1007/s002080100220
[5] Cutkosky, SD; Vinh, PA, Valuation semigroups of two dimensional rings, Proc. Lond. Math. Soc., 108, 350-384 (2014) · Zbl 1294.13004 · doi:10.1112/plms/pdt023
[6] Delgado, F.; Galindo, C.; Núñez, A., Saturation for valuations on two-dimensional regular local rings, Math. Z., 234, 519-550 (2000) · Zbl 0967.13019 · doi:10.1007/PL00004811
[7] Dumnicki, M.; Harbourne, B.; Küronya, A.; Roé, J.; Szemberg, T., Very general monomial valuations of \({\mathbb{P}}^2\) and a Nagata type conjecture, Commun. Anal. Geom., 25, 125-161 (2017) · Zbl 1386.14038 · doi:10.4310/CAG.2017.v25.n1.a4
[8] Favre, C., Jonsson, M.: The Valuative Tree, volume 1853 of Lecture Notes in Mathematics Springer, Berlin (2004) · Zbl 1064.14024
[9] Favre, C.; Jonsson, M., Eigenvaluations, Ann. Sci. Éc. Norm. Sup., 40, 309-349 (2007) · Zbl 1135.37018 · doi:10.1016/j.ansens.2007.01.002
[10] Favre, C.; Jonsson, M., Dynamical compactifications of \({\mathbb{C}}^2\), Ann. Math., 173, 211-248 (2011) · Zbl 1244.32012 · doi:10.4007/annals.2011.173.1.6
[11] Galindo, C., Plane valuations and their completions, Commun. Algebra, 23, 6, 2107-2123 (1995) · Zbl 0829.13001 · doi:10.1080/00927879508825332
[12] Galindo, C.; Monserrat, F., The cone of curves and the Cox ring of rational surfaces given by divisorial valuations, Adv. Math., 290, 1040-1061 (2016) · Zbl 1431.13006 · doi:10.1016/j.aim.2015.12.015
[13] Galindo, C., Monserrat, F., Moreno-Ávila, C.-J.: Seshadri-type constants and Newton-Okounkov bodies for non-positive at infinity divisorial valuations of Hirzebruch surfaces (2019). arXiv:1905.03531
[14] Galindo, C.; Monserrat, F.; Moreno-Ávila, C-J, Non-positive and negative at infinity divisorial valuations of Hirzebruch surfaces, Rev. Mat. Complut., 33, 349-372 (2020) · Zbl 1471.14015 · doi:10.1007/s13163-019-00319-w
[15] Galindo, C.; Monserrat, F.; Moyano-Fernández, J., Minimal plane valuations, J. Algebraic Geom., 27, 751-783 (2018) · Zbl 1396.14011 · doi:10.1090/jag/722
[16] Galindo, C.; Monserrat, F.; Moyano-Fernández, J.; Nickel, M., Newton-Okounkov bodies of exceptional curve valuations, Rev. Mat. Iberoam., 36, 7, 2147-2182 (2020) · Zbl 1476.14019 · doi:10.4171/rmi/1195
[17] Herrera-Govantes, FJ; Olalla-Acosta, MA; Spivakovsky, M.; Teissier, B., Extending a valuation centered in a local domain to the formal completion, Proc. Lond. Math. Soc., 105, 571-621 (2012) · Zbl 1276.12004 · doi:10.1112/plms/pds002
[18] Jonsson, M.: Dynamics of Berkovich Spaces in Low Dimensions, Cambridge Tracts in Mathematics. Springer (2015) · Zbl 1401.37103
[19] Kaveh, K.; Khovanskii, A., Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math., 176, 925-978 (2012) · Zbl 1270.14022 · doi:10.4007/annals.2012.176.2.5
[20] Mondal, P., How to determine the sign of a valuation on \(\mathbb{C}[x, y]\), Mich. Math. J., 66, 227-244 (2017) · Zbl 1386.13013 · doi:10.1307/mmj/1491465683
[21] Novakoski, J.; Spivakovsky, M., Key polynomials and pseudo-convergent sequences, J. Algebra, 495, 199-219 (2018) · Zbl 1391.13009 · doi:10.1016/j.jalgebra.2017.11.006
[22] Okounkov, A.: Why would multiplicities be log-concave? In: The Orbit Method in Geometry and Physics (Marseille, 2000), volume 213 of Programming Mathematical, pp. 329-347. Birkhäuser, Boston (2003) · Zbl 1063.22024
[23] Spivakovsky, M., Valuations in function fields of surfaces, Am. J. Math., 112, 107-156 (1990) · Zbl 0716.13003 · doi:10.2307/2374856
[24] Teissier, B.: Valuations, deformations, and toric geometry. In: Valuation Theory and Its Applications, II (Saskatoon, SK, 1999), volume 33 of Fields Institute Communications, pp. 361-459. American Mathematical Society, Providence (2003) · Zbl 1061.14016
[25] Teissier, B., Overweight deformations of affine toric varieties and local uniformization. In: Valuation Theory in Interaction, EMS Ser. Congr. Rep. Eur. Math. Soc., Zurich (2014) · Zbl 1312.14126
[26] Zariski, O., Local uniformization on algebraic varieties, Ann. Math., 2, 41, 852-896 (1940) · JFM 66.1327.02 · doi:10.2307/1968864
[27] Zariski, O., Samuel, P.: Commutative Algebra II. Vol. II. Graduate Texts in Mathematics, vol. 29 (1975) · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.