×

Equilibrium shapes with stress localisation for inextensible elastic Möbius and other strips. (English) Zbl 1469.74081

Summary: We formulate the problem of finding equilibrium shapes of a thin inextensible elastic strip, developing further our previous work on the Möbius strip. By using the isometric nature of the deformation we reduce the variational problem to a second-order one-dimensional problem posed on the centreline of the strip. We derive Euler-Lagrange equations for this problem in Euler-Poincaré form and formulate boundary-value problems for closed symmetric one- and two-sided strips. Numerical solutions for the Möbius strip show a singular point of stress localisation on the edge of the strip, a generic response of inextensible elastic sheets under torsional strain. By cutting and pasting operations on the Möbius strip solution, followed by parameter continuation, we construct equilibrium solutions for strips with different linking numbers and with multiple points of stress localisation. Solutions reveal how strips fold into planar or self-contacting shapes as the length-to-width ratio of the strip is decreased. Our results may be relevant for curvature effects on physical properties of extremely thin two-dimensional structures as for instance produced in nanostructured origami.

MSC:

74K20 Plates
74G65 Energy minimization in equilibrium problems in solid mechanics

Software:

AUTO-86; AUTO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arora, W.J., Nichol, A.J., Smith, H.I., Barbastathis, G.: Membrane folding to achieve three-dimensional nanostructures: nanopatterned silicon nitride folded with stressed chromium hinges. Appl. Phys. Lett. 88(5), 053108 (2006). doi:10.1063/1.2168516 · doi:10.1063/1.2168516
[2] Ashwell, D.G.: The inextensional twisting of a rectangular plate. Q. J. Mech. Appl. Math. 15(1), 91-107 (1962). doi:10.1093/qjmam/15.1.91 · Zbl 0111.21503 · doi:10.1093/qjmam/15.1.91
[3] Barr, S.: Experiments in Topology. Thomas Y. Crowell Company, New York (1964) · Zbl 0216.19501
[4] Caetano, E.W.S., Freire, V.N., dos Santos, S.G., Albuquerque, E.L., Galvão, D.S., Sato, F.: Defects in graphene-based twisted nanoribbons: structural, electronic, and optical properties. Langmuir 25(8), 4751-4759 (2009). doi:10.1021/la803929f · doi:10.1021/la803929f
[5] Cerda, E., Chaieb, S., Melo, F., Mahadevan, L.: Conical dislocations in crumpling. Nature 401, 46-49 (1999). doi:10.1038/43395 · doi:10.1038/43395
[6] Cerda, E., Mahadevan, L., Pasini, J.M.: The elements of draping. Proc. Natl. Acad. Sci. USA 101(7), 1806-1810 (2004). doi:10.1073/pnas.0307160101 · Zbl 1063.74069 · doi:10.1073/pnas.0307160101
[7] Chicone, C., Kalton, N.J.: Flat embeddings of the Möbius strip in R3. Commun. Appl. Nonlinear Anal. 9, 31-50 (2002) · Zbl 1035.53006
[8] Chubelaschwili, D., Pinkall, U.: Elastic strips. Manuscr. Math. 133(3-4), 307-326 (2010). doi:10.1007/s00229-010-0369-x · Zbl 1205.53002 · doi:10.1007/s00229-010-0369-x
[9] Dias, M.A., Dudte, L.H., Mahadevan, L., Santangelo, C.D.: Geometric mechanics of curved crease origami. Phys. Rev. Lett. 109, 114301 (2012). doi:10.1103/PhysRevLett.109.114301 · doi:10.1103/PhysRevLett.109.114301
[10] Doedel, E.; etal., AUTO: software for continuation and bifurcation problems in ordinary differential equations (2007)
[11] Emmer, M.: Visual art and mathematics: the Moebius band. Leonardo 13(2), 108-111 (1980) · doi:10.2307/1577979
[12] Friesecke, G., James, R.D., Mora, M.G., Müller, S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by gamma-convergence. C. R. Math. 336, 697-702 (2003). doi:10.1016/S1631-073X(03)00028-1 · Zbl 1140.74481 · doi:10.1016/S1631-073X(03)00028-1
[13] Fuchs, D., Tabachnikov, S.: Mathematical Omnibus: Thirty Lectures on Classic Mathematics. American Mathematical Society, Providence (2007) · Zbl 1318.00004
[14] Fuller, F.B.: The writhing number of a space curve. Proc. Natl. Acad. Sci. USA 68(4), 815-819 (1971) · Zbl 0212.26301 · doi:10.1073/pnas.68.4.815
[15] Fuller, F.B.: Decomposition of the linking number of a closed ribbon: a problem from molecular biology. Proc. Natl. Acad. Sci. USA 75(8), 3557-3561 (1978) · Zbl 0395.92010 · doi:10.1073/pnas.75.8.3557
[16] Gay-Balmaz, F., Holm, D.D., Meier, D.M., Ratiu, T.S., Vialard, F.X.: Invariant higher-order variational problems. Commun. Math. Phys. 309, 413-458 (2012). doi:10.1007/s00220-011-1313-y · Zbl 1279.58009 · doi:10.1007/s00220-011-1313-y
[17] Gravesen, J., Willatzen, M.: Eigenstates of Möbius nanostructures including curvature effects. Phys. Rev. A 72, 032108 (2005). doi:10.1103/PhysRevA.72.032108 · doi:10.1103/PhysRevA.72.032108
[18] Guven, J., Müller, M.M.: How paper folds: bending with local constraints. J. Phys. A, Math. Theor. 41(5), 055203 (2008). doi:10.1088/1751-8113/41/5/055203 · Zbl 1131.74030 · doi:10.1088/1751-8113/41/5/055203
[19] Guven, J., Müller, M.M., Vázquez-Montejo, P.: Conical instabilities on paper. J. Phys. A, Math. Theor. 45(1), 015203 (2012). doi:10.1088/1751-8113/45/1/015203 · Zbl 1337.74030 · doi:10.1088/1751-8113/45/1/015203
[20] Halpern, B., Weaver, C.: Inverting a cylinder through isometric immersions and isometric embeddings. Trans. Am. Math. Soc. 230, 41-70 (1977). http://links.jstor.org/sici?sici=0002-9947 · Zbl 0305.53003 · doi:10.1090/S0002-9947-1977-0474388-1
[21] Hangan, T.: Elastic strips and differential geometry. Rend. Semin. Mat. (Torino) 63(2), 179-186 (2005) · Zbl 1127.58004
[22] Hangan, T., Murea, C.: Elastic helices. Rev. Roum. Math. Pures Appl. 50(5-6), 641-645 (2005) · Zbl 1108.58016
[23] Hayashi, M., Ebisawa, H.: Little-parks oscillation of superconducting Möbius strip. J. Phys. Soc. Jpn. 70(12), 3495-3498 (2001) · doi:10.1143/JPSJ.70.3495
[24] Hornung, P.: Euler-Lagrange equations for variational problems on space curves. Phys. Rev. E 81(6), 066603 (2010). doi:10.1103/PhysRevE.81.066603 · doi:10.1103/PhysRevE.81.066603
[25] Hornung, P.: Euler-Lagrange equation and regularity for flat minimizers of the Willmore functional. Commun. Pure Appl. Math. 64(3), 367-441 (2011). doi:10.1002/cpa.20342 · Zbl 1209.49061 · doi:10.1002/cpa.20342
[26] Kirby, N., Fried, E.: Gamma-limit of a model for the elastic energy of an inextensible ribbon (2013). arXiv:1307.3540 [math.AP]. 10 p. · Zbl 1317.49016
[27] Korte, A.P., van der Heijden, G.H.M.: Curvature-induced electron localization in developable Möbius-like nanostructures. J. Phys. Condens. Matter 21(49), 495301 (2009). doi:10.1088/0953-8984/21/49/495301 · doi:10.1088/0953-8984/21/49/495301
[28] Korte, A.P., Starostin, E.L., van der Heijden, G.H.M.: Triangular buckling patterns of twisted inextensible strips. Proc. R. Soc. Lond. Ser. A 467(2125), 285-303 (2010). doi:10.1098/rspa.2010.0200 · Zbl 1219.74017 · doi:10.1098/rspa.2010.0200
[29] Kurono, Y., Umehara, M.: Flat Möbius strips of given isotopy type in \(\mathbb{R}^3\) whose centerlines are geodesics or lines of curvature. Geom. Dedic. 134(1), 109-130 (2008). doi:10.1007/s10711-008-9248-y · Zbl 1156.53007 · doi:10.1007/s10711-008-9248-y
[30] Lagally, M.G.: Strain engineered silicon nanomembranes. J. Phys. Conf. Ser. 61(1), 652-657 (2007). doi:10.1088/1742-6596/61/1/131 · doi:10.1088/1742-6596/61/1/131
[31] Lobkovsky, A., Gentges, S., Li, H., Morse, D., Witten, T.A.: Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270(5241), 1482-1485 (1995). doi:10.1126/science.270.5241.1482 · doi:10.1126/science.270.5241.1482
[32] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity Dover, New York (1944), reprinted. Cambridge University Press (1927) · Zbl 0063.03651
[33] Mahadevan, L., Keller, J.B.: The shape of a Möbius band. Proc. R. Soc. Lond. Ser. A 440, 149-162 (1993) · Zbl 0786.73041 · doi:10.1098/rspa.1993.0009
[34] Mansfield, E.H.: The inextensional theory for thin flat plates. Q. J. Mech. Appl. Math. 8(3), 338-352 (1955). doi:10.1093/qjmam/8.3.338 · Zbl 0065.17701 · doi:10.1093/qjmam/8.3.338
[35] Mansfield, E.H.: The Bending and Stretching of Plates, 2nd edn. Cambridge University Press, Cambridge (1989) · Zbl 0755.73003 · doi:10.1017/CBO9780511525193
[36] Martín-Santamaría, S., Rzepa, H.S.: Twist localisation in single, double and triple twisted Möbius cyclacenes. J. Chem. Soc., Perkin Trans. 2, pp. 2378-2381 (2000). doi:10.1039/B005560N · doi:10.1039/B005560N
[37] Naokawa, K.: Singularities of the asymptotic completion of developable Möbius strips. Osaka J. Math. 50(2), 425-437 (2013) · Zbl 1275.53009
[38] Neff, P.: A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin. Mech. Thermodyn. 16(6), 577-628 (2004). doi:10.1007/s00161-004-0182-4 · Zbl 1158.74419 · doi:10.1007/s00161-004-0182-4
[39] Randrup, T., Røgen, P.: Sides of the Möbius strip. Arch. Math. 66(6), 511-521 (1996). doi:10.1007/BF01268871 · Zbl 0864.53002 · doi:10.1007/BF01268871
[40] Røgen, P.: Embedding and knotting of flat compact surfaces in 3-space. Comment. Math. Helv. 76, 589-606 (2001) · Zbl 1005.58005 · doi:10.1007/s00014-001-0000-6
[41] Rohde, U.L., Poddar, A.K., Sundararajan, D.: Printed resonators: Möbius strip theory and applications. Microw. J. 56(11), 24 (2013)
[42] Sabitov, I.K.: Isometric immersions and embeddings of a flat Möbius strip in Euclidean spaces. Izv. Math. 71(5), 1049-1078 (2007). doi:10.1070/IM2007v071n05ABEH002376 · Zbl 1152.53004 · doi:10.1070/IM2007v071n05ABEH002376
[43] Sabitov, I.K.: On the developable ruled surfaces of low smoothness. Sib. Math. J. 50(5), 919-928 (2009). doi:10.1007/s11202-009-0102-8 · doi:10.1007/s11202-009-0102-8
[44] Sadowsky, M.: Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiusschen Bandes und Zurückführung des geometrischen Problems auf ein Variationsproblem. Sitzungsber. K. Preuss. Akad. Wiss. Berl. 22, 412-415 (1930) · JFM 56.0601.02
[45] Sadowsky, M.: Theorie der elastisch biegsamen undehnbaren Bänder mit Anwendungen auf das Möbius’sche Band. In: A.C.W. Oseen, W. Weibull (eds.) Verhandl. des 3. Intern. Kongr. f. Techn. Mechanik, 1930, Teil II, pp. 444-451. AB Sveriges Litografiska Tryckerier (1931) · JFM 57.1049.02
[46] Satija, I.I., Balakrishnan, R.: Geometric phases in twisted strips. Phys. Lett. A 373(39), 3582-3585 (2009). doi:10.1016/j.physleta.2009.07.083 · Zbl 1236.81124 · doi:10.1016/j.physleta.2009.07.083
[47] Schwarz, G.: A pretender to the title “canonical Moebius strip”. Pac. J. Math. 143(1), 195-200 (1990). http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1102646207 · Zbl 0723.57014 · doi:10.2140/pjm.1990.143.195
[48] Schwarz, G.E.: The dark side of the Moebius strip. Am. Math. Mon. 97(10), 890-897 (1990). http://links.jstor.org/sici?sici=0002-9890 · Zbl 0760.57015 · doi:10.2307/2324325
[49] Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 3, 3 edn. (1999). Publish or Perish · Zbl 1213.53001
[50] Starostin, E.L., van der Heijden, G.H.M.: The shape of a Möbius strip. Nat. Mater. 6(8), 563-567 (2007). doi:10.1038/nmat1929 · doi:10.1038/nmat1929
[51] Starostin, E.L., van der Heijden, G.H.M.: Tension-induced multistability in inextensible helical ribbons. Phys. Rev. Lett. 101(8), 084301 (2008). doi:10.1103/PhysRevLett.101.084301 · doi:10.1103/PhysRevLett.101.084301
[52] Starostin, E.L., van der Heijden, G.H.M.: Force and moment balance equations for geometric variational problems on curves. Phys. Rev. E 79(6), 066602 (2009). doi:10.1103/PhysRevE.79.066602 · doi:10.1103/PhysRevE.79.066602
[53] Starostin, E.L., van der Heijden, G.H.M.: Theory of equilibria of elastic 2-braids with interstrand interaction. J. Mech. Phys. Solids 64, 83-132 (2014). doi:10.1016/j.jmps.2013.10.014 · doi:10.1016/j.jmps.2013.10.014
[54] Stasiak, A., Katritch, V., Kauffman, L.H. (eds.): Ideal Knots, Series on Knots and Everything, vol. 19. World Scientific, Singapore (1998) · Zbl 0915.00018
[55] Tanda, S., Tsuneta, T., Okajima, Y., Inagaki, K., Yamaya, K., Hatakenaka, N.: Crystal topology: a Möbius strip of single crystals. Nature 417(6887), 397-398 (2002). doi:10.1038/417397a · doi:10.1038/417397a
[56] Tanda, S., Tsuneta, T., Toshima, T., Matsuura, T., Tsubota, M.: Topological crystals. J. Phys. IV 131, 289-294 (2005). doi:10.1051/jp4:2005131074 · doi:10.1051/jp4:2005131074
[57] Ushakov, V.: Parameterisation of developable surfaces by asymptotic lines. Bull. Aust. Math. Soc. 54(3), 411-421 (1996). doi:10.1017/S0004972700021821 · Zbl 0890.53004 · doi:10.1017/S0004972700021821
[58] Vliegenthart, G.A., Gompper, G.: Forced crumpling of self-avoiding elastic sheets. Nat. Mater. 5(3), 216-221 (2006). doi:10.1038/nmat1581 · doi:10.1038/nmat1581
[59] Wang, X., Zheng, X., Ni, M., Zou, L., Zeng, Z.: Theoretical investigation of Möbius strips formed from graphene. Appl. Phys. Lett. 97(12), 123103 (2010). doi:10.1063/1.3489982 · doi:10.1063/1.3489982
[60] Witten, T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643-675 (2007). doi:10.1103/RevModPhys.79.643 · Zbl 1205.74116 · doi:10.1103/RevModPhys.79.643
[61] Wunderlich, W.: Über ein abwickelbares Möbiusband. Monatshefte Math. 66(3), 276-289 (1962). doi:10.1007/BF01299052 · Zbl 0105.14802 · doi:10.1007/BF01299052
[62] Yakubo, K., Avishai, Y., Cohen, D.: Persistent currents in Möbius strips. Phys. Rev. B 67, 125319 (2003). doi:10.1103/PhysRevB.67.125319 · doi:10.1103/PhysRevB.67.125319
[63] Zorin, D., Curvature-based energy for simulation and variational modeling, 198-206 (2005), Los Alamitos · doi:10.1109/SMI.2005.14
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.