×

Medical-image-based aorta modeling with zero-stress-state estimation. (English) Zbl 1469.74085

Summary: Because the medical-image-based geometries used in patient-specific arterial fluid-structure interaction computations do not come from the zero-stress state (ZSS) of the artery, we need to estimate the ZSS required in the computations. The task becomes even more challenging for arteries with complex geometries, such as the aorta. In a method we introduced earlier the estimate is based on T-spline discretization of the arterial wall and is in the form of integration-point-based ZSS (IPBZSS). The T-spline discretization enables dealing with complex arterial geometries, such as an aorta model with branches, while retaining the desirable features of isogeometric discretization. With higher-order basis functions of the isogeometric discretization, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and fewer elements. In addition, the higher-order basis functions allow representation of more complex shapes within an element. The IPBZSS is a convenient representation of the ZSS because with isogeometric discretization, especially with T-spline discretization, specifying conditions at integration points is more straightforward than imposing conditions on control points. The method has two main components. 1. An iteration technique, which starts with a calculated ZSS initial guess, is used for computing the IPBZSS such that when a given pressure load is applied, the medical-image-based target shape is matched. 2. A design procedure, which is based on the Kirchhoff-Love shell model of the artery, is used for calculating the ZSS initial guess. Here we increase the scope and robustness of the method by introducing a new design procedure for the ZSS initial guess. The new design procedure has two features. (a) An IPB shell-like coordinate system, which increases the scope of the design to general parametrization in the computational space. (b) Analytical solution of the force equilibrium in the normal direction, based on the Kirchhoff-Love shell model, which places proper constraints on the design parameters. This increases the estimation accuracy, which in turn increases the robustness of the iterations and the convergence speed. To show how the new design procedure for the ZSS initial guess performs, we first present 3D test computations with a straight tube and a Y-shaped tube. Then we present a 3D computation where the target geometry is coming from medical image of a human aorta, and we include the branches in the model.

MSC:

74L15 Biomechanical solid mechanics
74S22 Isogeometric methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1-44. https://doi.org/10.1016/S0065-2156(08)70153-4 · Zbl 0747.76069 · doi:10.1016/S0065-2156(08)70153-4
[2] Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555-575. https://doi.org/10.1002/fld.505 · Zbl 1032.76605 · doi:10.1002/fld.505
[3] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Computation of cardiovascular fluid – structure interactions with the DSD/SST method. In: Proceedings of the 6th world congress on computational mechanics (CD-ROM), Beijing, China
[4] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulations. Trans Japan Soc Mech Eng Ser A 70:1224-1231. https://doi.org/10.1299/kikaia.70.1224 (in Japanese) · doi:10.1299/kikaia.70.1224
[5] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Methods Appl Mech Eng 195:1885-1895. https://doi.org/10.1016/j.cma.2005.05.050 · Zbl 1178.76241 · doi:10.1016/j.cma.2005.05.050
[6] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38:482-490. https://doi.org/10.1007/s00466-006-0065-6 · Zbl 1160.76061 · doi:10.1007/s00466-006-0065-6
[7] Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199-259 · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[8] Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310-322 · Zbl 1161.74020 · doi:10.1007/s00466-006-0084-3
[9] Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR \[(2007) \text{ YZ }\beta\] YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593-608. https://doi.org/10.1002/fld.1484 · Zbl 1207.76049 · doi:10.1002/fld.1484
[10] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3-37 · Zbl 1169.74015 · doi:10.1007/s00466-008-0315-x
[11] Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172-3178 · doi:10.1161/STROKEAHA.107.503698
[12] Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2000) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik left ventricular assist device. Comput Methods Appl Mech Eng 198(2009):3534-3550 · Zbl 1229.74096
[13] Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77-89 · Zbl 1398.92056 · doi:10.1007/s00466-009-0419-y
[14] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3-16 · Zbl 1301.92014 · doi:10.1007/s00466-009-0421-4
[15] Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46:147-157 · Zbl 1301.76078 · doi:10.1007/s00466-010-0484-2
[16] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481-498 · doi:10.1007/s10237-010-0189-7
[17] Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Progress Pediatr Cardiol 30:81-89 · doi:10.1016/j.ppedcard.2010.09.010
[18] Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593-599 · doi:10.1016/j.finel.2010.12.015
[19] Yao JY, Liu GR, Narmoneva DA, Hinton RB, Zhang Z-Q (2012) Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves. Comput Mech 50:789-804 · Zbl 1311.74047 · doi:10.1007/s00466-012-0781-z
[20] Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid – structure interaction: methods and applications. Wiley, New York · Zbl 1286.74001 · doi:10.1002/9781118483565
[21] Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid-structure interaction. Math Models Methods Appl Sci 23:215-221. https://doi.org/10.1142/S0218202513400010 · Zbl 1261.76025 · doi:10.1142/S0218202513400010
[22] Long CC, Marsden AL, Bazilevs Y (2013) Fluid-structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971-981. https://doi.org/10.1007/s00466-013-0858-3 · Zbl 1388.74039 · doi:10.1007/s00466-013-0858-3
[23] Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2013) A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput Mech 52:1141-1152. https://doi.org/10.1007/s00466-013-0868-1 · Zbl 1388.76130 · doi:10.1007/s00466-013-0868-1
[24] Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911-919. https://doi.org/10.1007/s00466-013-0931-y · Zbl 1311.74041 · doi:10.1007/s00466-013-0931-y
[25] Yao J, Liu GR (2014) A matrix-form GSM-CFD solver for incompressible fluids and its application to hemodynamics. Comput Mech 54:999-1012. https://doi.org/10.1007/s00466-014-0990-8 · Zbl 1311.76160 · doi:10.1007/s00466-014-0990-8
[26] Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921-932. https://doi.org/10.1007/s00466-013-0967-z · Zbl 1314.74056 · doi:10.1007/s00466-013-0967-z
[27] Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055-1071. https://doi.org/10.1007/s00466-014-1059-4 · Zbl 1311.74039 · doi:10.1007/s00466-014-1059-4
[28] Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211-1225. https://doi.org/10.1007/s00466-015-1166-x · Zbl 1325.74048 · doi:10.1007/s00466-015-1166-x
[29] Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005-1053 · Zbl 1423.74273 · doi:10.1016/j.cma.2014.10.040
[30] Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54:901-922. https://doi.org/10.1002/fld.1443 · Zbl 1276.76043 · doi:10.1002/fld.1443
[31] Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique. Int J Numer Methods Fluids 57:601-629. https://doi.org/10.1002/fld.1633 · Zbl 1230.76054 · doi:10.1002/fld.1633
[32] Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524-3533. https://doi.org/10.1016/j.cma.2008.05.024 · Zbl 1229.74100 · doi:10.1016/j.cma.2008.05.024
[33] Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space-time finite element computation of arterial fluid-structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101-116. https://doi.org/10.1002/cnm.1241 · Zbl 1180.92023 · doi:10.1002/cnm.1241
[34] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17-29. https://doi.org/10.1007/s00466-009-0423-2 · Zbl 1261.92010 · doi:10.1007/s00466-009-0423-2
[35] Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions. Comput Mech 46:31-41. https://doi.org/10.1007/s00466-009-0425-0 · Zbl 1301.92019 · doi:10.1007/s00466-009-0425-0
[36] Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308-323. https://doi.org/10.1002/fld.2360 · Zbl 1203.92044 · doi:10.1002/fld.2360
[37] Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665-1710. https://doi.org/10.1002/cnm.1433 · Zbl 1244.92036 · doi:10.1002/cnm.1433
[38] Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908. https://doi.org/10.1115/1.4005071 · doi:10.1115/1.4005071
[39] Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng 21:481-508. https://doi.org/10.1007/s11831-014-9113-0 · Zbl 1348.74104 · doi:10.1007/s11831-014-9113-0
[40] Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675-686. https://doi.org/10.1007/s00466-012-0760-4 · Zbl 1311.76157 · doi:10.1007/s00466-012-0760-4
[41] Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational fluid mechanics of cerebral arteries with aneurysm and stent. In: Li S, Qian D (eds) Multiscale simulations and mechanics of biological materials, Chap. 7. Wiley, pp 119-147 · Zbl 1311.76157
[42] Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061-1073. https://doi.org/10.1007/s00466-012-0790-y · Zbl 1366.76106 · doi:10.1007/s00466-012-0790-y
[43] Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437-2486. https://doi.org/10.1142/S0218202514500250 · Zbl 1296.76113 · doi:10.1142/S0218202514500250
[44] Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) Patient-specificcardiovascular fluid mechanics analysis with the ST and ALE-VMSmethods. In: Idelsohn SR (ed) Numerical simulations of coupled problems in engineering. Computational methods in applied sciences, Chap 4, vol 33. Springer, pp 71-102. https://doi.org/10.1007/978-3-319-06136-8_4
[45] Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time interface-tracking with topology change (ST-TC). Comput Mech 54:955-971. https://doi.org/10.1007/s00466-013-0935-7 · Zbl 1311.74045 · doi:10.1007/s00466-013-0935-7
[46] Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193-211. https://doi.org/10.1007/s00466-014-0999-z · doi:10.1007/s00466-014-0999-z
[47] Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time fluid mechanics computation of heart valve models. Comput Mech 54:973-986. https://doi.org/10.1007/s00466-014-1046-9 · Zbl 1311.74083 · doi:10.1007/s00466-014-1046-9
[48] Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018) Heart valve flow computation with the space – time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In: Wriggers, P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. Lecture notes in applied and computational mechanics. Springer, pp 77-99. https://doi.org/10.1007/978-3-319-59548-1_6
[49] Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017) Heart valve flow computation with the integrated space-time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176-188. https://doi.org/10.1016/j.compfluid.2016.11.012 · Zbl 1390.76944 · doi:10.1016/j.compfluid.2016.11.012
[50] Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid – structure interaction and flow simulation: research from lead investigators under forty - 2018. Modeling and simulation in science, engineering and technology. Springer, pp 29-89. https://doi.org/10.1007/978-3-319-96469-0_2
[51] Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035-1045. https://doi.org/10.1007/s00466-014-1017-1 · Zbl 1311.74044 · doi:10.1007/s00466-014-1017-1
[52] Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T, Tezduyar TE (2016) A geometrical-characteristics study inpatient-specific FSI analysis of blood flow in the thoracic aorta. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid – structure interaction and flow simulation: new methods and challenging computations, modeling and simulation in science, engineering and technology. Springer, pp 379-386. https://doi.org/10.1007/978-3-319-40827-9_29 · Zbl 1356.76471
[53] Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Yoshida A (2018) Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization. Comput Fluids https://doi.org/10.1016/j.compfluid.2018.05.025 · Zbl 1411.76184
[54] Takizawa K, Torii R, Takagi H, Tezduyar TE, Xu XY (2014) Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Comput Mech 54:1047-1053. https://doi.org/10.1007/s00466-014-1049-6 · Zbl 1311.76158 · doi:10.1007/s00466-014-1049-6
[55] Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001. https://doi.org/10.1142/S0218202512300013 · Zbl 1248.76118 · doi:10.1142/S0218202512300013
[56] Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014)Computational engineering analysis and design with ALE-VMS and ST methods. In: Idelsohn SR (ed) Numerical simulations of coupled problems in engineering. Computational methods in applied sciences, Chap 13, vol 33. Springer, pp 321-353. https://doi.org/10.1007/978-3-319-06136-8_13
[57] Bazilevs Y, Takizawa K, Tezduyar TE (2015) New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Math Models Methods Appl Sci 25:2217-2226. https://doi.org/10.1142/S0218202515020029 · Zbl 1329.76007 · doi:10.1142/S0218202515020029
[58] Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space-time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377-2406. https://doi.org/10.1142/S0218202515400126 · Zbl 1329.76345 · doi:10.1142/S0218202515400126
[59] Takizawa K, Tezduyar TE (2016) Newdirections in space – time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid – structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology. Springer, pp 159-178. https://doi.org/10.1007/978-3-319-40827-9_13 · Zbl 1356.76291
[60] Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 142:15-20. https://doi.org/10.1016/j.compfluid.2016.02.021 · Zbl 1390.76689 · doi:10.1016/j.compfluid.2016.02.021
[61] Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016) Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124-134. https://doi.org/10.1016/j.compfluid.2016.05.006 · Zbl 1390.76358 · doi:10.1016/j.compfluid.2016.05.006
[62] Otoguro Y, Takizawa K, Tezduyar TE (2017) Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189-200. https://doi.org/10.1016/j.compfluid.2017.04.017 · Zbl 1390.76345 · doi:10.1016/j.compfluid.2017.04.017
[63] Otoguro Y, Takizawa K, Tezduyar TE (2018) Ageneral-purpose NURBS mesh generation method for complexgeometries. In: Tezduyar TE (ed) Frontiers in computational fluid – structure interaction and flow simulation: research from lead investigators under forty - 2018. Modeling and simulation in science, engineering and technology. Springer, pp 399-434. https://doi.org/10.1007/978-3-319-96469-0_10
[64] Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19:171-225. https://doi.org/10.1007/s11831-012-9071-3 · Zbl 1354.92023 · doi:10.1007/s11831-012-9071-3
[65] Tezduyar TE, Takizawa K (2018) Space – time computations in practical engineering applications: a summary of the 25-year history. Comput Mech. https://doi.org/10.1007/s00466-018-1620-7 · Zbl 1471.76048
[66] Tezduyar TE, Cragin T, Sathe S, Nanna B (2007) FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007. CIMNE, Barcelona, Spain · Zbl 1375.76093
[67] Takizawa K, Takagi H, Tezduyar TE, Torii R (2014) Estimation of element-based zero-stress state for arterial FSI computations. Comput Mech 54:895-910. https://doi.org/10.1007/s00466-013-0919-7 · Zbl 1398.74096 · doi:10.1007/s00466-013-0919-7
[68] Takizawa K, Tezduyar TE, Sasaki T (2018) Estimation of element-based zero-stress state in arterial FSI computations with isogeometric wall discretization. In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. Lecture notes in applied and computational mechanics, Springer, pp 101-122. https://doi.org/10.1007/978-3-319-59548-1_7
[69] Takizawa K, Tezduyar TE, Sasaki T (2017) Aorta modeling with the element-based zero-stress state and isogeometric discretization. Comput Mech 59:265-280. https://doi.org/10.1007/s00466-016-1344-5 · doi:10.1007/s00466-016-1344-5
[70] Sasaki T, Takizawa K, Tezduyar TE (2018) Aorta zero-stress state modeling with T-spline discretization. Comput Mech. https://doi.org/10.1007/s00466-018-1651-0 · Zbl 1465.74125
[71] Takizawa K, Tezduyar TE, Sasaki T (2018) Isogeometric hyperelastic shell analysis with out-of-planedeformation mapping. Comput Mech. https://doi.org/10.1007/s00466-018-1616-3 · Zbl 1464.74107
[72] Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW (2007) Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng 35:530-545 · doi:10.1007/s10439-006-9252-z
[73] Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, Sederberg TW (2013) Isogeometricboundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197-221. https://doi.org/10.1016/j.cma.2012.11.001 · Zbl 1297.74156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.