×

Full waveform inversion using extended and simultaneous sources. (English) Zbl 1470.35429

Summary: PDE-constrained optimization problems are often treated using the reduced formulation where the PDE constraints are eliminated. This approach is known to be more computationally feasible than other alternatives at large scales. However, the elimination of the constraints forces the optimization process to fulfill the constraints at all times. In some problems this may lead to a highly nonlinear objective, which is hard to solve. An example of such a problem, which we focus on in this work, is full waveform inversion (FWI), which appears in seismic exploration of oil and gas reservoirs and in medical imaging. In an attempt to relieve the nonlinearity of FWI, several approaches suggested expanding the optimization search space and relaxing the PDE constraints. This comes, however, with severe memory and computational costs, which we aim to reduce. In this work we adopt the expanded search space approach and suggest a new formulation of FWI using extended source functions. To make the source-extended problem more feasible in memory and computations, we couple the source extensions in the form of a low-rank matrix. This way, we have a large-but-manageable additional parameter space, which has a rather low memory footprint and is much more suitable for solving large scale instances of the problem than the full-rank additional space. In addition, we show how our source-extended approach is applied together with the popular simultaneous sources technique-a stochastic optimization technique that significantly reduces the computations needed for FWI inversions. We demonstrate our approaches for solving FWI problems using 2D and 3D models with high-frequency data only.

MSC:

35R30 Inverse problems for PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
86A22 Inverse problems in geophysics
86A15 Seismology (including tsunami modeling), earthquakes
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
35Q86 PDEs in connection with geophysics

Software:

MUMPS; PARDISO; PSP; clique; jInv; Julia
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] H. S. Aghamiry, A. Gholami, and S. Operto, Implementing bound constraints and total-variation regularization in extended full-waveform inversion with the alternating direction method of multiplier: Application to large contrast media, Geophys. J. Internat., 218 (2019), pp. 855-872.
[2] H. S. Aghamiry, A. Gholami, and S. Operto, Improving full-waveform inversion by wavefield reconstruction with the alternating direction method of multipliers, Geophys., 84 (2019), pp. R139-R162.
[3] H. S. Aghamiry, A. Gholami, and S. Operto, Robust wavefield inversion via phase retrieval, Geophys. J. Internat., 221 (2020), pp. 1327-1340.
[4] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15-41, https://doi.org/10.1137/S0895479899358194. · Zbl 0992.65018
[5] F. Aminzadeh, B. Jean, and T. Kunz, 3-D Salt and Overthrust Models, Society of Exploration Geophysicists, 1997.
[6] A. Y. Aravkin, D. Drusvyatskiy, and T. van Leeuwen, Efficient quadratic penalization through the partial minimization technique, IEEE Trans. Automat. Control, 63 (2017), pp. 2131-2138. · Zbl 1423.49020
[7] H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix, J. ACM, 58 (2011), 8. · Zbl 1327.68331
[8] S. Bernard, V. Monteiller, D. Komatitsch, and P. Lasaygues, Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging, Phys. Med. Biol., 62 (2017), pp. 7011-7035.
[9] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65-98, https://doi.org/10.1137/141000671. · Zbl 1356.68030
[10] B. Biondi and A. Almomin, Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion, Geophys., 79 (2014), pp. WA129-WA140.
[11] A. Brougois, M. Bourget, P. Lailly, M. Poulet, P. Ricarte, and R. Versteeg, Marmousi, model and data, in EAEG Workshop-Practical Aspects of Seismic Data Inversion, European Association of Geoscientists & Engineers, 1990, cp-108.
[12] I. Epanomeritakis, V. Akcelik, O. Ghattas, and J. Bielak, A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion, Inverse Problems, 24 (2008), 034015. · Zbl 1142.65052
[13] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471-1492, https://doi.org/10.1137/040615195. · Zbl 1095.65109
[14] L. Guasch, O. C. Agudo, M.-X. Tang, P. Nachev, and M. Warner, Full-waveform inversion imaging of the human brain, NPJ Digital Med., 3 (2020), pp. 1-12.
[15] E. Haber, Computational Methods in Geophysical Electromagnetics, SIAM, Philadelphia, 2014, https://doi.org/10.1137/1.9781611973808. · Zbl 1304.86001
[16] E. Haber, U. Ascher, and D. Oldenburg, On optimization techniques for solving nonlinear inverse problems, Inverse Problems, 16 (2000), pp. 1263-1280. · Zbl 0974.49021
[17] E. Haber and U. M. Ascher, Preconditioned all-at-once methods for large, sparse parameter estimation problems, Inverse Problems, 17 (2001), pp. 1847-1864, https://doi.org/10.1088/0266-5611/17/6/319. · Zbl 0995.65110
[18] E. Haber, M. Chung, and F. Herrmann, An effective method for parameter estimation with PDE constraints with multiple right-hand sides, SIAM J. Optim., 22 (2012), pp. 739-757, https://doi.org/10.1137/11081126X. · Zbl 1253.35220
[19] E. Haber, E. Treister, and E. Holtham, Obtaining low frequencies for full waveform inversion by using augmented physics, ASEG Extended Abstracts, 2016 (2016), pp. 1-5.
[20] G. Huang, R. Nammour, and W. W. Symes, Volume source based extended waveform inversion, Geophys., 83 (2018), pp. 1-139.
[21] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer-Verlag, New York, 2005. · Zbl 1068.65022
[22] J. R. Krebs, J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee, A. Baumstein, and M.-D. Lacasse, Fast full-wavefield seismic inversion using encoded sources, Geophys., 74 (2009), pp. WCC177-WCC188.
[23] Y. E. Li and L. Demanet, Full-waveform inversion with extrapolated low-frequency data, Geophys., 81 (2016), pp. R339-R348.
[24] M. Liu, R. Kumar, E. Haber, and A. Aravkin, Simultaneous-shot inversion for PDE-constrained optimization problems with missing data, Inverse Problems, 35 (2018), 025003, https://doi.org/10.1088/1361-6420/aaf317. · Zbl 1422.49036
[25] Z. Liu and J. Zhang, Joint traveltime, waveform, and waveform envelope inversion for near-surface imaging, Geophys., 82 (2017), pp. R235-R244.
[26] L. Métivier, R. Brossier, S. Operto, and J. Virieux, Full waveform inversion and the truncated Newton method, SIAM Rev., 59 (2017), pp. 153-195, https://doi.org/10.1137/16M1093239. · Zbl 1357.86001
[27] J. Poulson, B. Engquist, S. Li, and L. Ying, A parallel sweeping preconditioner for heterogeneous \(3\) D Helmholtz equations, SIAM J. Sci. Comput., 35 (2013), pp. C194-C212, https://doi.org/10.1137/120871985. · Zbl 1275.65073
[28] R. Pratt, Seismic waveform inversion in the frequency domain, part \(1\): Theory, and verification in a physical scale model, Geophys., 64 (1999), pp. 888-901.
[29] R. G. Pratt, C. Shin, and G. Hick, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophys. J. Internat., 133 (1998), pp. 341-362.
[30] Y. Rao and Y. Wang, Seismic waveform tomography with shot-encoding using a restarted L-BFGS algorithm, Sci. Rep., 7 (2017), pp. 1-9.
[31] F. Roosta-Khorasani and U. Ascher, Improved bounds on sample size for implicit matrix trace estimators, Found. Comput. Math., 15 (2015), pp. 1187-1212. · Zbl 1323.65043
[32] F. Roosta-Khorasani, K. van den Doel, and U. Ascher, Data completion and stochastic algorithms for PDE inversion problems with many measurements, Electron. Trans. Numer. Anal., 42 (2014), pp. 177-196. · Zbl 1312.65176
[33] F. Roosta-Khorasani, K. van den Doel, and U. Ascher, Stochastic algorithms for inverse problems involving PDEs and many measurements, SIAM J. Sci. Comput., 36 (2014), pp. S3-S22, https://doi.org/10.1137/130922756. · Zbl 1307.65158
[34] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268. · Zbl 0780.49028
[35] L. Ruthotto, E. Treister, and E. Haber, jInv-a flexible Julia package for PDE parameter estimation, SIAM J. Sci. Comput., 39 (2017), pp. S702-S722, https://doi.org/10.1137/16M1081063. · Zbl 1373.86013
[36] F. Santosa and W. W. Symes, Linear inversion of band-limited reflection seismograms, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 1307-1330, https://doi.org/10.1137/0907087. · Zbl 0602.73113
[37] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems, 20 (2004), pp. 475-487. · Zbl 1062.65035
[38] C. Shin and Y. Ho Cha, Waveform inversion in the Laplace-Fourier domain, Geophys. J. Internat., 177 (2009), pp. 1067-1079.
[39] E. Soubies, T.-A. Pham, and M. Unser, Efficient inversion of multiple-scattering model for optical diffraction tomography, Optics Express, 25 (2017), pp. 21786-21800.
[40] A. Tarantola, Inverse Problem Theory, Elsevier, Amsterdam, 1987. · Zbl 0875.65001
[41] E. Treister and E. Haber, Full waveform inversion guided by travel time tomography, SIAM J. Sci. Comput., 39 (2017), pp. S587-S609, https://doi.org/10.1137/16M1082718. · Zbl 1373.86014
[42] E. Treister and I. Yavneh, A multilevel iterated-shrinkage approach to \(l_1\) penalized least-squares minimization, IEEE Trans. Signal Process., 60 (2012), pp. 6319-6329, https://doi.org/10.1109/TSP.2012.2218807. · Zbl 1393.94463
[43] T. van Leeuwen, A. Y. Aravkin, and F. J. Herrmann, Seismic waveform inversion by stochastic optimization, Internat. J. Geophys., 2011 (2011), 689041.
[44] T. van Leeuwen and F. J. Herrmann, Mitigating local minima in full-waveform inversion by expanding the search space, Geophys. J. Internat., 195 (2013), pp. 661-667.
[45] T. van Leeuwen and F. J. Herrmann, 3D frequency-domain seismic inversion with controlled sloppiness, SIAM J. Sci. Comput., 36 (2014), pp. S192-S217, https://doi.org/10.1137/130918629. · Zbl 1305.86008
[46] T. van Leeuwen and F. J. Herrmann, A penalty method for PDE-constrained optimization in inverse problems, Inverse Problems, 32 (2016), 015007. · Zbl 1410.49029
[47] C. R. Vogel, Computational Methods for Inverse Problems, Frontiers Appl. Math. 23, SIAM, Philadelphia, 2002, https://doi.org/10.1137/1.9780898717570. · Zbl 1008.65103
[48] M. Zibulevsky and M. Elad, L1-L2 optimization in signal and image processing, IEEE Signal Process. Mag., 27 (2010), pp. 76-88.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.