×

False confidence, non-additive beliefs, and valid statistical inference. (English) Zbl 1471.62236

Summary: Statistics has made tremendous advances since the times of Fisher, Neyman, Jeffreys, and others, but the fundamental and practically relevant questions about probability and inference that puzzled our founding fathers remain unanswered. To bridge this gap, I propose to look beyond the two dominating schools of thought and ask the following three questions: what do scientists need out of statistics, do the existing frameworks meet these needs, and, if not, how to fill the void? To the first question, I contend that scientists seek to convert their data, posited statistical model, etc., into calibrated degrees of belief about quantities of interest. To the second question, I argue that any framework that returns additive beliefs, i.e., probabilities, necessarily suffers from false confidence – certain false hypotheses tend to be assigned high probability – and, therefore, risks systematic bias. This reveals the fundamental importance of non-additive beliefs in the context of statistical inference. But non-additivity alone is not enough so, to the third question, I offer a sufficient condition, called validity, for avoiding false confidence, and present a framework, based on random sets and belief functions, that provably meets this condition. Finally, I discuss characterizations of p-values and confidence intervals in terms of valid non-additive beliefs, which imply that users of these classical procedures are already following the proposed framework without knowing it.

MSC:

62A01 Foundations and philosophical topics in statistics
62G15 Nonparametric tolerance and confidence regions

Software:

BayesDA
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Aldrich, J., Fisher’s “Inverse Probability” of 1930, Int. Stat. Rev., 68, 2, 155-1172 (2000) · Zbl 1107.01305
[2] Aldrich, J., R.A. Fisher on Bayes and Bayes’ theorem, Bayesian Anal., 3, 1, 161-170 (2008) · Zbl 1330.62005
[3] Balch, M. S., Mathematical foundations for a theory of confidence structures, Int. J. Approx. Reason., 53, 7, 1003-1019 (2012) · Zbl 1264.68169
[4] Balch, M. S.; Martin, R.; Ferson, S., Satellite conjunction analysis and the false confidence theorem, Proc. R. Soc. A (2019), in press
[5] Barnard, G. A., A Coherent View of Statistical Inference (1985), Department of Statistics and Actuarial Science, University of Waterloo, Technical report
[6] Barnard, G. A., Pivotal models and the fiducial argument, Int. Stat. Rev., 63, 3, 309-323 (1995) · Zbl 0836.62002
[7] Benjamin, D. J.; Berger, J. O.; Johannesson, M.; Nosek, B. A.; Wagenmakers, E. J.; Berk, R.; Bollen, K. A.; Brembs, B.; Brown, L.; Camerer, C.; Cesarini, D.; Chambers, C. D.; Clyde, M.; Cook, T. D.; De Boeck, P.; Dienes, Z.; Dreber, A.; Easwaran, K.; Efferson, C.; Fehr, E.; Fidler, F.; Field, A. P.; Forster, M.; George, E. I.; Gonzalez, R.; Goodman, S.; Green, E.; Green, D. P.; Greenwald, A. G.; Hadfield, J. D.; Hedges, L. V.; Held, L.; Hua Ho, T.; Hoijtink, H.; Hruschka, D. J.; Imai, K.; Imbens, G.; Ioannidis, J. P.A.; Jeon, M.; Jones, J. H.; Kirchler, M.; Laibson, D.; List, J.; Little, R.; Lupia, A.; Machery, E.; Maxwell, S. E.; McCarthy, M.; Moore, D. A.; Morgan, S. L.; Munafó, M.; Nakagawa, S.; Nyhan, B.; Parker, T. H.; Pericchi, L.; Perugini, M.; Rouder, J.; Rousseau, J.; Savalei, V.; Schönbrodt, F. D.; Sellke, T.; Sinclair, B.; Tingley, D.; Van Zandt, T.; Vazire, S.; Watts, D. J.; Winship, C.; Wolpert, R. L.; Xie, Y.; Young, C.; Zinman, J.; Johnson, V. E., Redefine statistical significance, Nat. Hum. Behav. (2017)
[8] Berger, J. O.; Liseo, B.; Wolpert, R. L., Integrated likelihood methods for eliminating nuisance parameters, Stat. Sci., 14, 1, 1-28 (1999) · Zbl 1059.62521
[9] Berger, J. O.; Sellke, T., Testing a point null hypothesis: irreconcilability of \(P\) values and evidence, J. Am. Stat. Assoc., 82, 397, 112-139 (1987) · Zbl 0612.62022
[10] Berger, J. O.; Wolpert, R. L., The Likelihood Principle, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 6 (1984), Institute of Mathematical Statistics: Institute of Mathematical Statistics Hayward, CA · Zbl 1060.62500
[12] Birnbaum, A., On the foundations of statistical inference, J. Am. Stat. Assoc., 57, 269-326 (1962) · Zbl 0107.36505
[13] Box, G. E.P., Sampling and Bayes’ inference in scientific modelling and robustness, J. R. Stat. Soc., Ser. A, 143, 4, 383-430 (1980), with discussion · Zbl 0471.62036
[14] Brown, L. D.; Cai, T. T.; DasGupta, A., Interval estimation for a binomial proportion, Stat. Sci., 16, 2, 101-133 (2001), with comments and a rejoinder by the authors · Zbl 1059.62533
[15] Camerer, C. F.; Dreber, A.; Forsell, E.; Ho, T.-H.; Huber, J.; Johannesson, M.; Kirchler, M.; Almenberg, J.; Altmejd, A.; Chan, T.; Heikensten, E.; Holzmeister, F.; Imai, T.; Isaksson, S.; Nave, G.; Pfeiffer, T.; Razen, M.; Wu, H., Evaluating replicability of laboratory experiments in economics, Science, 351, 6280, 1433-1436 (2016)
[16] Camerer, C. F.; Dreber, A.; Holzmeister, F.; Ho, T.-H.; Huber, J.; Johannesson, M.; Kirchler, M.; Nave, G.; Nosek, B. A.; Pfeiffer, T.; Altmejd, A.; Buttrick, N.; Chan, T.; Chen, Y.; Forsell, E.; Gampa, A.; Heikensten, E.; Hummer, L.; Imai, T.; Isaksson, S.; Manfredi, D.; Rose, J.; Wagenmakers, E.-J.; Wu, H., Evaluating the replicability of social science experiments in nature and science between 2010 and 2015, Nat. Hum. Behav., 2, 9, 637-644 (2018)
[17] Carmichael, I.; Williams, J. P., An exposition of the false confidence theorem, Stat, 7, 1, e201 (2018)
[18] Carnap, R., Logical Foundations of Probability (1962), The University of Chicago Press: The University of Chicago Press Chicago, Ill · Zbl 0143.01201
[19] Cella, L.; Martin, R., Incorporating expert opinion in an inferential model while maintaining validity, (ISIPTA ’19: Proceedings of the 11th International Symposium on Imprecise Probability: Theory and Applications (2019)), in press
[20] Cheng, Q.; Gao, X.; Martin, R., Exact prior-free probabilistic inference on the heritability coefficient in a linear mixed model, Electron. J. Stat., 8, 2, 3062-3076 (2014) · Zbl 1308.62050
[21] Chiang, A. K.L., A simple general method for constructing confidence intervals for functions of variance components, Technometrics, 43, 3, 356-367 (2001)
[22] Choquet, G., Theory of capacities, Ann. Inst. Fourier, Grenoble, 5, 131-295 (1955) · Zbl 0064.35101
[23] Cox, D. R., Principles of Statistical Inference (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1102.62002
[24] Cox, D. R.; Hinkley, D. V., Theoretical Statistics (1974), Chapman and Hall: Chapman and Hall London · Zbl 0334.62003
[25] Crane, H., The fundamental principle of probability: resolving the replication crisis with skin in the game (2018), Researchers.One, under review
[26] Crane, H., The impact of p-hacking on “Redefine Statistical Significance”, Basic Appl. Soc. Psychol., 40, 4, 219-235 (2018)
[27] Crane, H., Polls, pundits, or prediction markets: an assessment of election forecasting (2018), Researchers.One, under review
[28] Crane, H., Probabilistic Foundations of Statistical Network Analysis, Monographs on Statistics and Applied Probability, vol. 157 (2018), CRC Press: CRC Press Boca Raton, FL · Zbl 06849135
[29] Crane, H.; Martin, R., Academia’s case of Stokholm syndrome, Quillette (2018)
[30] Crane, H.; Martin, R., In peer review we (don’t) trust: how peer review’s filtering poses a systemic risk to science (2018), Researchers.One, under review
[31] Crane, H.; Martin, R., Is statistics meeting the needs of science? (2018), Researchers.One, under review
[32] Crane, H.; Martin, R., The researchers.one mission (2018), Researchers.One
[33] Crane, H.; Martin, R., Rethinking probabilistic prediction: lessons learned from the 2016 U.S. presidential election (2018), Researchers.One, under review
[34] de Finetti, B., La prévision: ses lois logiques, ses sources subjectives, Ann. Inst. Henri Poincaré, 7, 1, 1-68 (1937) · JFM 63.1070.02
[35] de Finetti, B., Probability, Induction and Statistics, Wiley Series in Probability and Mathematical Statistics (1972), John Wiley & Sons: John Wiley & Sons London-New York-Sydney · Zbl 0275.60001
[36] de Finetti, B., Theory of Probability, vol. 1 (1990), Wiley Classics Library, John Wiley & Sons, Ltd.: Wiley Classics Library, John Wiley & Sons, Ltd. Chichester, A critical introductory treatment, Translated from the Italian and with a preface by Antonio Machì and Adrian Smith, with a foreword by D.V. Lindley, reprint of the 1974 translation
[37] de Haan, L.; Ferreira, A., Extreme Value Theory. An Introduction, Springer Series in Operations Research and Financial Engineering (2006), Springer: Springer New York · Zbl 1101.62002
[38] Dempster, A. P., Further examples of inconsistencies in the fiducial argument, Ann. Math. Stat., 34, 884-891 (1963) · Zbl 0214.17902
[39] Dempster, A. P., On the difficulties inherent in Fisher’s fiducial argument, J. Am. Stat. Assoc., 59, 56-66 (1964) · Zbl 0149.14905
[40] Dempster, A. P., New methods for reasoning towards posterior distributions based on sample data, Ann. Math. Stat., 37, 355-374 (1966) · Zbl 0178.54302
[41] Dempster, A. P., Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat., 38, 325-339 (1967) · Zbl 0168.17501
[42] Dempster, A. P., A generalization of Bayesian inference (with discussion), J. R. Stat. Soc., Ser. B, 30, 205-247 (1968) · Zbl 0169.21301
[43] Dempster, A. P., Upper and lower probabilities generated by a random closed interval, Ann. Math. Stat., 39, 957-966 (1968) · Zbl 0251.62010
[44] Dempster, A. P., Upper and lower probability inferences for families of hypotheses with monotone density ratios, Ann. Math. Stat., 40, 953-969 (1969) · Zbl 0211.50204
[45] Dempster, A. P., The Dempster-Shafer calculus for statisticians, Int. J. Approx. Reason., 48, 2, 365-377 (2008) · Zbl 1274.62053
[46] Dempster, A. P., Statistical inference from a Dempster-Shafer perspective, (Lin, X.; Genest, C.; Banks, D. L.; Molenberghs, G.; Scott, D. W.; Wang, J.-L., Past, Present, and Future of Statistical Science, chapter 24 (2014), Chapman & Hall/CRC Press)
[47] Denœux, T., Decision-making with belief functions: a review, Int. J. Approx. Reason., 109, 87-110 (2019) · Zbl 1465.91038
[48] Denœux, T.; Li, S., Frequency-calibrated belief functions: review and new insights, Int. J. Approx. Reason., 92, 232-254 (2018) · Zbl 1423.68503
[49] Dubois, D.; Prade, H., Possibility Theory (1988), Plenum Press: Plenum Press New York · Zbl 0645.68108
[50] Dufour, J.-M., Some impossibility theorems in econometrics with applications to structural and dynamic models, Econometrica, 65, 6, 1365-1387 (1997) · Zbl 0886.62116
[51] Edwards, A. W.F., What did Fisher mean by “inverse probability” in 1912-1922?, Stat. Sci., 12, 3, 177-184 (1997) · Zbl 0955.62526
[52] Efron, B., R.A. Fisher in the 21st century, Stat. Sci., 13, 2, 95-122 (1998) · Zbl 1074.01536
[53] Efron, B., Bayes’ theorem in the 21st century, Science, 340, 6137, 1177-1178 (2013) · Zbl 1355.00005
[54] Efron, B., Discussion: “Confidence distribution, the frequentist distribution estimator of a parameter: a review”, Int. Stat. Rev., 81, 1, 41-42 (2013) · Zbl 1416.62161
[55] Ermini Leaf, D.; Liu, C., Inference about constrained parameters using the elastic belief method, Int. J. Approx. Reason., 53, 5, 709-727 (2012) · Zbl 1446.62082
[56] Evans, M., What does the proof of Birnbaum’s theorem prove?, Electron. J. Stat., 7, 2645-2655 (2013) · Zbl 1294.62002
[57] Evans, M., Measuring Statistical Evidence Using Relative Belief, Monographs in Statistics and Applied Probability Series (2015), Chapman & Hall/CRC Press · Zbl 1358.62004
[59] Fisher, R. A., Statistical Methods and Scientific Inference (1973), Hafner Press: Hafner Press New York · Zbl 0281.62002
[60] Fraser, D. A.S., The Structure of Inference (1968), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0164.48703
[61] Fraser, D. A.S., Is Bayes posterior just quick and dirty confidence?, Stat. Sci., 26, 3, 299-316 (2011) · Zbl 1246.62040
[62] Fraser, D. A.S., Rejoinder: “Is Bayes posterior just quick and dirty confidence?”, Stat. Sci., 26, 3, 329-331 (2011) · Zbl 1246.62040
[63] Fraser, D. A.S., Why does statistics have two theories?, (Lin, X.; Genest, C.; Banks, D. L.; Molenberghs, G.; Scott, D. W.; Wang, J.-L., Past, Present, and Future of Statistical Science (2014), Chapman & Hall/CRC Press), chapter 22
[64] Fraser, D. A.S.; Bédard, M.; Wong, A.; Lin, W.; Fraser, A. M., Bayes, reproducibility and the quest for truth, Stat. Sci., 31, 4, 578-590 (2016) · Zbl 1442.62016
[65] Fraser, D. A.S.; Reid, N.; Marras, E.; Yi, G. Y., Default priors for Bayesian and frequentist inference, J. R. Stat. Soc., Ser. B, Stat. Methodol., 72, 5, 631-654 (2010) · Zbl 1411.62070
[66] Fraser, D. A.S.; Wong, A.; Sun, Y., Three enigmatic examples and inference from likelihood, Can. J. Stat., 37, 2, 161-181 (2009) · Zbl 1176.62017
[67] Fricker, R. D.; Burke, K.; Han, X.; Woodall, W. H., Assessing the statistical analyses used in Basic and Applied Social Psychology after their \(p\)-value ban, Am. Stat., 73, suppl (2019), vol. 1, pp. 374-384
[68] Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B., Bayesian Data Analysis (2004), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1039.62018
[69] Gelman, A.; Meng, X.-L.; Stern, H., Posterior predictive assessment of model fitness via realized discrepancies, Stat. Sin., 6, 4, 733-807 (1996), With comments and a rejoinder by the authors · Zbl 0859.62028
[70] Ghosh, M.; Kim, Y.-H., The Behrens-Fisher problem revisited: a Bayes-frequentist synthesis, Can. J. Stat., 29, 1, 5-17 (2001) · Zbl 1015.62023
[71] Gleser, L. J.; Hwang, J. T., The nonexistence of \(100(1 - \alpha) \text{\%}\) confidence sets of finite expected diameter in errors-in-variables and related models, Ann. Stat., 15, 4, 1351-1362 (1987) · Zbl 0638.62035
[73] Grünwald, P., Safe probability, J. Stat. Plan. Inference, 195, 47-63 (2018) · Zbl 1383.62014
[74] Hannig, J., On generalized fiducial inference, Stat. Sin., 19, 2, 491-544 (2009) · Zbl 1168.62004
[75] Hannig, J., Generalized fiducial inference via discretization, Stat. Sin., 23, 2, 489-514 (2013) · Zbl 1379.62002
[76] Hannig, J.; Iyer, H.; Lai, R. C.S.; Lee, T. C.M., Generalized fiducial inference: a review and new results, J. Am. Stat. Assoc., 111, 515, 1346-1361 (2016)
[77] Hannig, J.; Iyer, H.; Patterson, P., Fiducial generalized confidence intervals, J. Am. Stat. Assoc., 101, 473, 254-269 (2006) · Zbl 1118.62316
[78] Hannig, J.; Lee, T. C.M., Generalized fiducial inference for wavelet regression, Biometrika, 96, 4, 847-860 (2009) · Zbl 1179.62057
[79] Hedayat, A. S.; Sinha, B. K., Design and Inference in Finite Population Sampling (1991), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0850.62160
[80] Hewitt, E.; Savage, L. J., Symmetric measures on Cartesian products, Trans. Am. Math. Soc., 80, 470-501 (1955) · Zbl 0066.29604
[81] Hinkelmann, K.; Kempthorne, O., Design and Analysis of Experiments, Wiley Series in Probability and Statistics. Wiley-Interscience, vol. 1 (2008), John Wiley & Sons: John Wiley & Sons Hoboken, NJ, Introduction, to experimental design · Zbl 0122.37706
[82] Hsu, P. L., Contributions to the theory of “Student”s” \(t\)-test as applied to the problem of two samples, (Statistical Research Memoirs (1938), University College: University College London), 1-24
[83] Huber, P. J., The use of Choquet capacities in statistics, Bull. Inst. Int. Stat., 45, book 4, 181-191 (1973), With discussion by P. Gänssler, W.S. Hall, L. Schmetterer, Charles Stein, and G.N. Wilkinson and with reply by the author
[84] Huber, P. J., Robust Statistics, Wiley Series in Probability and Mathematical Statistics (1981), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0536.62025
[85] Huber, P. J.; Strassen, V., Minimax tests and the Neyman-Pearson lemma for capacities, Ann. Stat., 1, 251-263 (1973) · Zbl 0259.62008
[86] Ioannidis, J. P.A., Why most published research findings are false, PLoS Med., 2, e124 (2005)
[87] Ionides, E. L.; Giessing, A.; Ritov, Y.; Page, S. E., Response to the ASA’s statement on \(p\)-values: context, process, and purpose, Am. Stat., 71, 1, 88-89 (2017)
[88] Jeffreys, H., Theory of Probability (1961), Clarendon Press: Clarendon Press Oxford · Zbl 0116.34904
[89] Jin, H.; Li, S.; Jin, Y., The IM-based method for testing the non-inferiority of odds ratio in matched-pairs design, Stat. Probab. Lett., 109, 145-151 (2016) · Zbl 1384.62305
[90] Kadane, J. B., Principles of Uncertainty, Texts in Statistical Science Series (2011), CRC Press: CRC Press Boca Raton, FL · Zbl 1250.62009
[91] Kim, S.-H.; Cohen, A. S., On the Behrens-Fisher problem: a review, J. Educ. Behav. Stat., 23, 4, 356-377 (1998)
[92] Kohlas, J.; Monney, P.-A., A Mathematical Theory of Hints, Lecture Notes in Economics and Mathematical Systems, vol. 425 (1995), Springer-Verlag: Springer-Verlag Berlin
[93] Krishnamoorthy, K.; Thomson, J., A more powerful test for comparing two Poisson means, J. Stat. Plan. Inference, 119, 1, 23-35 (2004) · Zbl 1031.62013
[94] Lai, R. C.S.; Hannig, J.; Lee, T. C.M., Generalized fiducial inference for ultrahigh dimensional regression, J. Am. Stat. Assoc., 110, 760-772 (2015) · Zbl 1373.62111
[95] Lakatos, I., Philosophical Papers, vol. 1. The Methodology of Scientific Research Programmes (1978), Cambridge University Press: Cambridge University Press Cambridge-New York, edited and with an introduction by John Worrall and Gregory Currie · Zbl 0373.02002
[97] Le Cam, L., Maximum likelihood: an introduction, Int. Stat. Rev., 58, 2, 153-171 (1990) · Zbl 0715.62045
[98] Lehmann, E. L., Nonparametrics: Statistical Methods Based on Ranks (1975), Holden-Day Inc.: Holden-Day Inc. San Francisco, Calif · Zbl 0354.62038
[99] Lehmann, E. L.; Casella, G., Theory of Point Estimation, Springer Texts in Statistics (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0916.62017
[100] Lindley, D. V., Understanding Uncertainty, Wiley Series in Probability and Statistics (2014), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. Hoboken, NJ · Zbl 1283.60002
[101] Liu, C.; Martin, R., Frameworks for prior-free posterior probabilistic inference, Wiley Interdiscip. Rev.: Comput. Stat., 7, 1, 77-85 (2015)
[102] Martin, R., A mathematical characterization of confidence as valid belief (2017)
[103] Martin, R., A statistical inference course based on \(p\)-values, Am. Stat., 71, 2, 128-136 (2017)
[104] Martin, R., On an inferential model construction using generalized associations, J. Stat. Plan. Inference, 195, 105-115 (2018) · Zbl 1383.62017
[105] Martin, R., On valid uncertainty quantification about a model, (ISIPTA ’19: Proceedings of the 11th International Symposium on Imprecise Probability: Theory and Applications (2019)), in press
[107] Martin, R.; Lin, Y., Exact prior-free probabilistic inference in a class of non-regular models, Stat, 5, 312-321 (2016)
[108] Martin, R.; Lingham, R. T., Prior-free probabilistic prediction of future observations, Technometrics, 58, 2, 225-235 (2016)
[109] Martin, R.; Liu, C., Inferential models: a framework for prior-free posterior probabilistic inference, J. Am. Stat. Assoc., 108, 501, 301-313 (2013) · Zbl 06158344
[110] Martin, R.; Liu, C., A note on p-values interpreted as plausibilities, Stat. Sin., 24, 4, 1703-1716 (2014) · Zbl 1480.62010
[111] Martin, R.; Liu, C., Conditional inferential models: combining information for prior-free probabilistic inference, J. R. Stat. Soc., Ser. B, Stat. Methodol., 77, 1, 195-217 (2015) · Zbl 1414.62093
[112] Martin, R.; Liu, C., Marginal inferential models: prior-free probabilistic inference on interest parameters, J. Am. Stat. Assoc., 110, 512, 1621-1631 (2015) · Zbl 1373.62028
[113] Martin, R.; Liu, C., Inferential Models, Monographs on Statistics and Applied Probability, vol. 147 (2016), CRC Press: CRC Press Boca Raton, FL · Zbl 1377.62018
[114] Martin, R.; Walker, S. G., Asymptotically minimax empirical Bayes estimation of a sparse normal mean vector, Electron. J. Stat., 8, 2, 2188-2206 (2014) · Zbl 1302.62015
[115] Martin, R.; Walker, S. G., Empirical priors for target posterior concentration rates (2017)
[116] Mayo, D., On the Birnbaum argument for the strong likelihood principle, Stat. Sci., 29, 2, 227-239 (2014) · Zbl 1332.62025
[117] Mayo, D. G., Error and the Growth of Experimental Knowledge (1996), University of Chicago Press: University of Chicago Press Chicago
[118] Mayo, D. G., Statistical Inference as Severe Testing (2018), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1400.62002
[119] Mayo, D. G.; Cox, D. R., Frequentist statistics as a theory of inductive inference, (Optimality. Optimality, IMS Lecture Notes Monogr. Ser., vol. 49 (2006), Inst. Math. Statist: Inst. Math. Statist Beachwood, OH), 77-97 · Zbl 1268.62006
[120] McCullagh, P., What is a statistical model?, Ann. Stat., 30, 5, 1225-1310 (2002), with comments and a rejoinder by the author · Zbl 1039.62003
[121] McCullagh, P.; Nelder, J. A., Generalized Linear Models, Monographs on Statistics and Applied Probability (1983), Chapman & Hall: Chapman & Hall London · Zbl 0588.62104
[123] Meng, X.-L., X-L Files: Bayesian, fiducial and frequentist: BFF4EVER, IMS Bull., 46, 4, 17 (2017)
[124] Molchanov, I., Theory of Random Sets, Probability and Its Applications (New York) (2005), Springer-Verlag London Ltd.: Springer-Verlag London Ltd. London · Zbl 1109.60001
[125] Nguyen, H. T., On random sets and belief functions, J. Math. Anal. Appl., 65, 3, 531-542 (1978) · Zbl 0409.60016
[126] Nguyen, H. T., An Introduction to Random Sets (2006), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1100.60001
[127] Nuzzo, R., Scientific method: statistical errors, Nature, 506, 150-152 (2014)
[128] Estimating the reproducibility of psychological science, Science, 349, 6251 (2015)
[129] Polyanin, A. D.; Zaitsev, V. F.; Moussiaux, A., Handbook of First Order Partial Differential Equations, Differential and Integral Equations and Their Applications, vol. 1 (2002), Taylor & Francis Ltd.: Taylor & Francis Ltd. London · Zbl 1031.35001
[130] Popper, K. R., The Logic of Scientific Discovery (1959), Hutchinson and Co., Ltd.: Hutchinson and Co., Ltd. London · Zbl 0083.24104
[131] Qiu, Y.; Zhang, L.; Liu, C., Exact and efficient inference for partial Bayes problems, Electron. J. Stat., 12, 2, 4640-4668 (2018) · Zbl 1414.62094
[132] Reid, N.; Cox, D. R., On some principles of statistical inference, Int. Stat. Rev., 83, 2, 293-308 (2015)
[133] Rubin, D. B., Bayesianly justifiable and relevant frequency calculations for the applied statistician, Ann. Stat., 12, 4, 1151-1172 (1984) · Zbl 0555.62010
[134] Savage, L. J., The foundations of statistics reconsidered, (Proc. 4th Berkeley Sympos. Math. Statist. and Prob., vol. I (1961), Univ. California Press: Univ. California Press Berkeley, Calif), 575-586 · Zbl 0121.13603
[135] Savage, L. J., The Foundations of Statistics (1972), Dover Publications, Inc.: Dover Publications, Inc. New York, revised edition · Zbl 0276.62006
[136] Savage, L. J., On rereading R.A. Fisher, Ann. Stat., 4, 3, 441-500 (1976), edited posthumously by John W. Pratt, with a discussion by B. Efron, Churchill Eisenhart, Bruno de Finetti, D.A.S. Fraser, V.P. Godambe, I.J. Good, O. Kempthorne and Stephen M. Stigler · Zbl 0325.62008
[137] Scheffé, H., Practical solutions of the Behrens-Fisher problem, J. Am. Stat. Assoc., 65, 1501-1508 (1970) · Zbl 0224.62009
[138] Schervish, M. J., \(P\) values: what they are and what they are not, Am. Stat., 50, 3, 203-206 (1996)
[139] Schweder, T.; Hjort, N. L., Confidence and likelihood, Scand. J. Stat., 29, 2, 309-332 (2002) · Zbl 1017.62026
[140] Schweder, T.; Hjort, N. L., Confidence, Likelihood, Probability, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 41 (2016), Cambridge University Press: Cambridge University Press New York
[141] Seidenfeld, T., R.A. Fisher’s fiducial argument and Bayes’ theorem, Stat. Sci., 7, 3, 358-368 (1992) · Zbl 0955.62522
[142] Shafer, G., A Mathematical Theory of Evidence (1976), Princeton University Press: Princeton University Press Princeton, N.J. · Zbl 0359.62002
[143] Shafer, G., Allocations of probability, Ann. Probab., 7, 5, 827-839 (1979) · Zbl 0414.60002
[144] Shafer, G., From Cournot’s principle to market efficiency, (Touffut, J.-P., Augustin Cournot: Modelling Economics (2007), Edward Elgar), 55-95
[145] Shafer, G., A mathematical theory of evidence, Int. J. Approx. Reason., 79, 7-25 (2016), turns 40 · Zbl 1386.68001
[146] Shafer, G.; Vovk, V., The sources of Kolmogorov’s Grundbegriffe, Stat. Sci., 21, 1, 70-98 (2006) · Zbl 1426.01011
[147] Speed, T., Terence’s Stuff: principles, IMS Bull., 17 (2016)
[148] Stein, C., An example of wide discrepancy between fiducial and confidence intervals, Ann. Math. Stat., 30, 877-880 (1959) · Zbl 0093.15703
[149] Syring, N.; Martin, R., Gibbs posterior inference on the minimum clinically important difference, J. Stat. Plan. Inference, 187, 67-77 (2017) · Zbl 1391.62251
[150] Syring, N.; Martin, R., Calibrating general posterior credible regions, Biometrika, 106, 2, 479-486 (2019) · Zbl 1454.62105
[151] Syring, N.; Martin, R., Robust and rate optimal gibbs posterior inference on the boundary of a noisy image, Ann. Stat. (2019), in press
[152] Taleb, N. N., Skin in the Game: Hidden Asymmetries in Daily Life (2018), Random House: Random House New York
[154] Trafimow, D.; Amrhein, V.; Areshenkoff, C. N.; Barrera-Causil, C.; Beh, E. J.; Bigic, Y.; Bono, R.; Bradley, M. T.; Briggs, W. M.; Cepeda-Freyre, H. A.; Chaigneau, S. E.; Ciocca, D. R.; Carlos Correa, J.; Cousineau, D.; de Boer, M. R.; Dhar, S. S.; Dolgov, I.; Gomez-Benito, J.; Grendar, M.; Grice, J.; Guerrero-Gimenez, M. E.; Gutierrez, A.; Huedo-Medina, T. B.; Jaffe, K.; Janyan, A.; Liuzza, M. T.; Lombardo, R.; Marks, M.; Meinlschmidt, G.; Nalborczyk, L.; Nguyen, H. T.; Ospina, R.; Suarez, I.; Tegethoff, M.; Tejo, M.; van de Schoot, R.; Vankov, I.; Velasco-Forero, S.; Wang, T.; Yamada, Y.; Zoppino, F. C.; Marmelojo-Ramos, F., Manipulating the alpha level cannot cure significance testing, PeerJ Preprints, 6, Article e3411v2 pp. (2018)
[155] Trafimow, D.; Marks, M., Editorial, Basic Appl. Soc. Psychol., 37, 1, 1-2 (2015)
[156] Valentine, J. C.; Aloe, A. M.; Lau, T. S., Life after NHST: How to describe your data without “\(p\)-ing” everywhere, Basic Appl. Soc. Psychol., 37, 5, 260-273 (2015)
[157] Walley, P., Statistical Reasoning with Imprecise Probabilities, Monographs on Statistics and Applied Probability., vol. 42 (1991), Chapman & Hall Ltd.: Chapman & Hall Ltd. London · Zbl 0732.62004
[158] Walley, P., Towards a unified theory of imprecise probability, Reasoning with Imprecise Probabilities. Reasoning with Imprecise Probabilities, Ghent, 1999. Reasoning with Imprecise Probabilities. Reasoning with Imprecise Probabilities, Ghent, 1999, Int. J. Approx. Reason., 24, 2-3, 125-148 (2000) · Zbl 1007.28015
[159] Wasserman, L. A., Prior envelopes based on belief functions, Ann. Stat., 18, 1, 454-464 (1990) · Zbl 0711.62001
[160] Wasserman, L. A.; Kadane, J. B., Bayes’ theorem for Choquet capacities, Ann. Stat., 18, 3, 1328-1339 (1990) · Zbl 0736.62026
[161] Wasserstein, R. L.; Lazar, N. A., The ASA’s statement on \(p\)-values: context, process, and purpose, Am. Stat., 70, 2, 129-133 (2016), Editorial
[162] Weerahandi, S., Generalized confidence intervals, J. Am. Stat. Assoc., 88, 423, 899-905 (1993) · Zbl 0785.62029
[163] Welch, B. L., The significance of the difference between two means when the population variances are unequal, Biometrika, 29, 350-362 (1938) · Zbl 0018.22602
[164] Welch, B. L., The generalization of ‘Student’s’ problem when several different population variances are involved, Biometrika, 34, 28-35 (1947) · Zbl 0029.40802
[165] Woolston, C., Psychology journal bans \(p\) values, Nature, 519, 9 (2015)
[166] Xie, M.-g.; Singh, K., Confidence distribution, the frequentist distribution estimator of a parameter: a review, Int. Stat. Rev., 81, 1, 3-39 (2013) · Zbl 1416.62170
[167] (Yager, R.; Liu, L., Classic Works of the Dempster-Shafer Theory of Belief Functions, vol. 219 (2008), Springer: Springer Berlin) · Zbl 1135.68051
[168] Zabell, S., R.A. Fisher on the history of inverse probability, Stat. Sci., 4, 3, 247-263 (1989), with comments by Robin L. Plackett and G.A. Barnard and a rejoinder by the author · Zbl 0955.01501
[169] Zabell, S. L., R.A. Fisher and the fiducial argument, Stat. Sci., 7, 3, 369-387 (1992) · Zbl 0955.62521
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.