×

Optimal inspection for missions with a possibility of abortion or switching to a lighter regime. (English) Zbl 1471.90060

Summary: Many real-world critical systems, e.g., aircrafts, manned space flight systems and submarines, complex technological processes utilize mission aborts to enhance their survivability. Specifically, a mission can be aborted when a certain malfunction condition is met and a rescue or recovery procedure is then initiated. In this paper, we consider systems with observed degradation when a decision to abort a mission or to continue operation is executed at inspection. If this degradation is larger than the optimally predetermined level, then a mission is aborted, whereas if it is smaller, a system continues its operation either under the initial (full load) regime or under the lighter regime with the decreased load. The latter option also depends on the observed value of degradation at inspection. An optimal problem minimizing the expected costs with respect to the relevant levels of deterioration and inspection time is formulated and analytical relationships for the probabilities of interest and expected cost rates are derived. A new virtual age-based approach to age recalculation after the switching of regimes is proposed. A detailed illustrative example is presented.

MSC:

90B25 Reliability, availability, maintenance, inspection in operations research
60K10 Applications of renewal theory (reliability, demand theory, etc.)

Software:

SPLIDA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alaswad, S.; Xiang, Y., A review on condition-based maintenance optimization models for stochastically deteriorating system, Reliab Eng Syst Saf, 157, 54-63 (2017) · doi:10.1016/j.ress.2016.08.009
[2] Badía, FG; Berrade, MD, Optimum maintenance policy of a periodically inspected system under imperfect repair, Adv Oper Res (2009) · Zbl 1198.90095 · doi:10.1155/2009/691203
[3] Badıa, FG; Berrade, MD; Campos, CA, Optimal inspection and preventive maintenance of units with revealed and unrevealed failures, Reliab Eng Syst Saf, 78, 157-163 (2002) · doi:10.1016/S0951-8320(02)00154-0
[4] Castro, IT, An age-based maintenance strategy for a degradation-threshold shock-model for a system subjected to multiple defects, Asia Pac J Oper Res, 30, 1350016-1350029 (2013) · Zbl 1278.90111 · doi:10.1142/S0217595913500164
[5] Castro, IT; Caballe, NC; Perez, CJ, A condition-based maintenance for a system subject to multiple degradation processes and external shocks, Int J Syst Sci, 46, 1692-1704 (2015) · Zbl 1332.93330 · doi:10.1080/00207721.2013.828796
[6] Cha, JH; Mi, J.; Yun, WY, Modelling a general standby system and evaluation of its performance, Appl Stoch Models Bus Ind, 24, 159-169 (2008) · Zbl 1199.90009 · doi:10.1002/asmb.704
[7] Çinlar, E., On a generalization of gamma process, J Appl Probab, 17, 467-480 (1980) · Zbl 0434.60043 · doi:10.2307/3213036
[8] Dai, MDM; Chen, KH, Cost evaluation of airline maintenance investigation-triggering methods, Top, 22, 950-975 (2014) · Zbl 1336.90028 · doi:10.1007/s11750-013-0306-8
[9] Finkelstein, M., Failure rate modelling for reliability and risk (2008), London: Springer, London · Zbl 1194.90001
[10] Finkelstein, M.; Hazra, NK, On stochastic comparisons for load sharing series and parallel systems, Probab Eng Inf Sci, 31, 311-329 (2017) · Zbl 1370.90013 · doi:10.1017/S0269964816000395
[11] Finkelstein, M.; Levitin, G., Optimal mission duration for partially repairable systems operating in a random environment, Methodol Comput Appl Probab, 20, 505-516 (2018) · Zbl 1393.90052 · doi:10.1007/s11009-017-9571-6
[12] Finkelstein, M.; Cha, JH; Levitin, G., On a new age-replacement policy for items with observed stochastic degradation, Qual Reliab Eng Int, 36, 1132-1144 (2020) · doi:10.1002/qre.2619
[13] Gertsbakh, I., Reliability theory with applications to preventive maintenance (2005), Berlin: Springer, Berlin · Zbl 0959.62088
[14] Grall, A.; Dieulle, D.; Berenguer, C.; Roussignol, M., Continuous-time predictive maintenance scheduling for a deteriorating system, IEEE Trans Reliab, 51, 141-150 (2002) · doi:10.1109/TR.2002.1011518
[15] Kahle, W., Imperfect repair in degradation processes: a Kijima-type approach, Appl Stoch Model Bus, 35, 211-220 (2019) · doi:10.1002/asmb.2438
[16] Kijima, M., Some results for repairable systems with general repair, J Appl Probab, 26, 89-102 (1989) · Zbl 0671.60080 · doi:10.2307/3214319
[17] Levitin, G.; Finkelstein, M., Optimal mission abort policy for systems operating in a random environment, Risk Anal, 38, 795-803 (2018) · doi:10.1111/risa.12886
[18] Levitin, G.; Finkelstein, M., Optimal mission abort policy for systems in a random environment with variable shock rate, Reliab Eng Syst Saf, 169, 11-17 (2018) · doi:10.1016/j.ress.2017.07.017
[19] Levitin, G.; Xing, L.; Dai, Y., Mission abort policy in heterogeneous non-repairable 1-out-of-N warm standby systems, IEEE Trans Reliab, 67, 342-354 (2018) · doi:10.1109/TR.2017.2740330
[20] Levitin, G.; Finkelstein, M.; Xiang, Y., Optimal aborting rule in multi-attempt missions performed by multicomponent systems, Eur J Oper Res, 283, 244-252 (2020) · Zbl 1431.90052 · doi:10.1016/j.ejor.2019.10.042
[21] Levitin, G.; Finkelstein, M.; Huang, Y., Optimal mission abort policies for multistate systems, Reliab Eng Syst Saf, 193, 106671 (2020) · doi:10.1016/j.ress.2019.106671
[22] Liao, H.; Elsayed, EA; Chan, LY, Maintenance of continuously monitored degrading systems, Eur J Oper Res, 175, 821-835 (2006) · Zbl 1142.90375 · doi:10.1016/j.ejor.2005.05.017
[23] Meeker, WQ; Escobar, LA, Statistical methods for reliability data (1998), New York: Wiley, New York · Zbl 0949.62086
[24] Montoro-Cazorla, D.; Pérez-Ocón, R., Two shock and wear systems under repair standing a finite number of shocks, Eur J Oper Res, 214, 298-307 (2011) · Zbl 1218.90067 · doi:10.1016/j.ejor.2011.04.016
[25] Montoro-Cazorla, D.; Pérez-Ocón, R., A shock and wear system under environmental conditions subject to internal failures, repair, and replacement, Reliab Eng Syst Saf, 99, 55-61 (2012) · doi:10.1016/j.ress.2011.10.009
[26] Montoro-Cazorla, D.; Pérez-Ocón, R., A reliability system under cumulative shocks governed by a BMAP, Appl Math Model, 39, 7620-7629 (2015) · Zbl 1443.90051 · doi:10.1016/j.apm.2015.03.066
[27] Montoro-Cazorla, D.; Pérez-Ocón, R.; Segovia, MC, Shock and wear models under policy n using phase-type distributions, Appl Math Model, 33, 543-554 (2009) · doi:10.1016/j.apm.2007.11.017
[28] Myers, A., Probability of loss assessment of critical k-out-of-n: G systems having a mission abort policy, IEEE Trans Reliab, 58, 694-701 (2009) · doi:10.1109/TR.2009.2026807
[29] Nakagawa, T., Maintenance theory of reliability (2005), London: Springer, London
[30] Nelson, W., Accelerated testing, statistical models, test plans and data analysis (1990), New York: Wiley, New York · Zbl 0717.62089
[31] Pan, Z.; Balakrishnan, N., Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes, Reliab Eng Syst Saf, 96, 949-957 (2011) · doi:10.1016/j.ress.2011.03.014
[32] Qiu, Q.; Cui, L., Optimal mission abort policy for systems subject to random shocks based on virtual age process, Reliab Eng Syst Saf, 189, 11-20 (2019) · doi:10.1016/j.ress.2019.04.010
[33] Qiu, Q.; Cui, L., Gamma process based optimal mission abort policy, Reliab Eng Syst Saf, 190, 106496 (2019) · doi:10.1016/j.ress.2019.106496
[34] Qiu, Q.; Cui, L.; Wu, B., Dynamic mission abort policy for systems operating in a controllable environment with self-healing mechanism, Reliab Eng Syst Saf, 203, 107069 (2020) · doi:10.1016/j.ress.2020.107069
[35] Rausand, M.; Høyland, A., System reliability theory: models, statistical methods, and applications (2003), New York: Wiley, New York
[36] Shaked, M.; Shanthikumar, JG, Stochastic orders (2007), New York: Springer, New York · Zbl 1111.62016 · doi:10.1007/978-0-387-34675-5
[37] Sun, Q.; Ye, ZS; Peng, W., Scheduling preventive maintenance considering the saturation effect, IEEE Trans Reliab, 68, 2, 741-752 (2018) · doi:10.1109/TR.2018.2874265
[38] Tseng, ST; Balakrishnan, N.; Tsai, CC, Optimal step-stress accelerated degradation test plan for gamma degradation processes, IEEE Trans Reliab, 58, 611-618 (2009) · doi:10.1109/TR.2009.2033734
[39] van Noortwijk, JM, A survey of the application of gamma processes in maintenance, Reliab Eng Syst Saf, 94, 2-21 (2009) · doi:10.1016/j.ress.2007.03.019
[40] Yang, L.; Sun, Q.; Ye, ZS, Designing mission abort strategies based on early-warning information: application to UAV, IEEE Trans Ind Inf, 16, 1, 277-287 (2019) · doi:10.1109/TII.2019.2912427
[41] Yu, M.; Tang, Y., Optimal replacement policy based on maximum repair time for a random shock and wear model, Top, 25, 80-94 (2017) · Zbl 1360.90114 · doi:10.1007/s11750-016-0417-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.