×

Uzawa-type iterative solution methods for constrained saddle point problems. (English) Zbl 1472.49016

The paper deals with the iterative solution of saddle point problems in finite dimensional real valued spaces. It summarizes the general theory developed by the author with co-authors in the last years. For finite-dimensional saddle point problem with a nonlinear monotone operator and constraints, iterative methods are knows, which can be viewed as preconditioned Uzawa methods or as Uzawa-block relaxation methods. In the first section the author gives some general results on the solvability of problem the considered problem and the convergence of iterative methods. These results are based on three articles from the author and coworkers from the last years. In the following sections some application on the finite element/finete differences discretization of elliptic and parabolic PDEs optimal control problems and the resulting (optimality) conditions, i.e. saddle point problems are considered. When applying iterative method to such problems, one problem is to construct suitable preconditioners that ensure the convergence and effective implementation of iterative methods and to obtain the admissible intervals of iterative parameters which do not depend on mesh parameters. The choice of preconditioners is handled case by case for the considered example problems.

MSC:

49J40 Variational inequalities
65K15 Numerical methods for variational inequalities and related problems
49M20 Numerical methods of relaxation type
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Glowinski, J.-L. Lions, and R. Tremolieres Numerical analysis of variational inequalities (North-Holland, Amsterdam, 1981). · Zbl 0463.65046
[2] M. Fortin and R. Glowinski, Augmented Lagrangan Methods (North-Holland, Amsterdam, New York, 1983).
[3] R. Glowinski and P. LeTallec, Augmented Lagrangan and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in AppliedMathematics (SIAM, Philadelphia, PA, 1989). · doi:10.1137/1.9781611970838
[4] R. Glowinski, Numerical Methods for Nonlinear Variational Problems (Springer, Berlin, Heidelberg, 2008). · Zbl 1139.65050
[5] Troltzsch, F.; Pufert, U.; Weiser, M., The convergence of an interior point method for an elliptic control problem with mixed control-state constraints, Comput. Optim. Appl., 39, 183-218, (2008) · Zbl 1144.90511 · doi:10.1007/s10589-007-9063-7
[6] Troltzsch, F.; Yousept, I., A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints, Comput. Optim. Appl., 42, 43-66, (2009) · Zbl 1153.65343 · doi:10.1007/s10589-007-9114-0
[7] Graser, C.; Kornhuber, R., Nonsmooth Newton methods for set-valued saddle point problems, SIAM J. Numer. Anal., 47, 1251-1273, (2009) · Zbl 1190.49035 · doi:10.1137/060671012
[8] Griesse, R.; Kunisch, K., A semi-smooth Newton method for solving elliptic equations with gradient constraints, ESAIMMath. Model. Numer. Anal., 43, 209-238, (2009) · Zbl 1161.65338 · doi:10.1051/m2an:2008049
[9] Schiela, A.; Wollner, W., Barrier methods for optimal control problems with convex nonlinear gradient constraints, SIAM J. Optim., 21, 269-286, (2011) · Zbl 1279.90194 · doi:10.1137/080742154
[10] Deckelnick, K.; Hinze, M., Variational discretization of parabolic control problems in the presence of pointwise state constraints, J. Comp.Math., 29, 1-15, (2011) · Zbl 1249.49038
[11] Yu. V. Bychenkov and E. V. Chizhonkov, IterativeMethods for Solving Saddle Point Problems (BINOM, Moscow, 2010) [in Russian].
[12] Benzi, M.; Golub, G.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137, (2005) · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[13] Laitinen, E.; Lapin, A.; Lapin, S., On the iterative solution of finite-dimensional inclusions with applications to optimal control problems, Comp.Methods Appl.Math., 10, 283-301, (2010) · Zbl 1283.65066
[14] Lapin, A., Preconditioned Uzawa type methods for finite-dimensional constrained saddle point problems, Lobachevskii J.Math., 31, 309-322, (2010) · Zbl 1257.65032 · doi:10.1134/S1995080210040013
[15] Lapin, A.; Khasanov, M., State-constrained optimal control of an elliptic equation with its right-hand side used as control function, Lobachevskii J.Math., 32, 453-462, (2011) · Zbl 1255.49045 · doi:10.1134/S1995080211040287
[16] Laitinen, E.; Lapin, A.; Lapin, S., Iterative solution methods for variational inequalities with nonlinear main operator and constraints to gradient of solution, Lobachevskii J.Math., 33, 344-352, (2012) · Zbl 1378.65137 · doi:10.1134/S1995080212040129
[17] Laitinen, E.; Lapin, A., Iterative solution methods for a class of state constrained optimal control problems, Appl.Math., 3, 1862-1867, (2012) · doi:10.4236/am.2012.312253
[18] Laitinen, E.; Lapin, A., Iterative solution sethods for the large-scale constrained saddle point problems, in NumericalMethods for Differential Equations, Optimization, and Technological Problems, Comput. Methods Appl. Sci., 27, 19-39, (2013) · Zbl 1267.65080 · doi:10.1007/978-94-007-5288-7_2
[19] Lapin, A.; Khasanov, M., Iterative solution methods for mesh approximation of control and state constrained optimal control problem with observation in a part of the domain, Lobachevskii J. Math., 35, 241-258, (2014) · Zbl 1316.65063 · doi:10.1134/S1995080214030081
[20] Kashtanov, N. S.; Lapin, A. V., Efficiently implementable iterative methods for linear elliptic variational inequalities with constraints on the gradient of solution, Russ. Math., 59, 7-20, (2015) · Zbl 1328.65146 · doi:10.3103/S1066369X15070026
[21] Laitinen, E.; Lapin, A.; Lapin, S., Easily implementable iterative methods for variational inequalities with nonlinear diffusion-convection operator and constraints to gradient of solution, Russ. J.Numer. Anal.Math. Model., 30, 43-54, (2015) · Zbl 1309.65076 · doi:10.1515/rnam-2015-0005
[22] Dautov, R.; Lapin, A., Finite element approximation and iterative method solution of elliptic control problem with constraints to gradient of state, Lobachevskii J.Math., 36, 65-75, (2015) · Zbl 1327.65121 · doi:10.1134/S1995080215010059
[23] Ignatieva, M. A.; Lapin, A. V., Using domain decomposition method and non-matching grids for solving some variational inequalities, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki, 157, 68-78, (2015) · Zbl 1342.65155
[24] Lapin, A.; Laitinen, E.; Lapin, S., Explicit algorithms to solve a class of state constrained parabolic optimal control problems, Russ. J. Numer. Anal.Math. Model., 30, 351-362, (2015) · Zbl 1329.49046 · doi:10.1515/rnam-2015-0032
[25] Lapin, A.; Platonov, A., Numerical solution of a parabolic optimal control problem with point-wise state constraints, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki, 158, 81-89, (2016)
[26] Lapin, A.; Laitinen, E., Iterative solution methods for parabolic optimal control problem with constraints on time derivative of state function, in Recent Advances in Mathematics, Proceedings of the International Conference on Pure Mathematics, Applied Mathematics and Computational Methods, Zakynthos Island, Greece, July 16-20, 48, 72-74, (2015)
[27] Lapin, A.; Romanenko, A., Uzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem, IOP Conf. Ser.: Mater. Sci. Eng., 158, 012059, (2016) · doi:10.1088/1757-899X/158/1/012059
[28] A. Lapin, E. Laitinen, and S. Lapin, “Non-overlapping domain decomposition method for a variational inequality with gradient constraints,”IOPConf. Ser.:Mater. Sci. Eng. 158 (1) (2016). · Zbl 1354.65135
[29] Lapin, A.; Laitinen, E., Preconditioned Uzawa-type method for a state constrained parabolic optimal control problem with boundary control, Lobachevskii J.Math., 37, 561-569, (2016) · Zbl 1354.65135 · doi:10.1134/S1995080216050085
[30] Romanenko, A., Explicit scheme with variable in time steps for a parabolic optimal control problem, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki, 158, 376-387, (2016)
[31] Lapin, A. V.; Zalyalov, D. G., Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints, Russ. Math. (Iz. VUZ), 61, 18-28, (2017) · Zbl 1377.65072 · doi:10.3103/S1066369X17040041
[32] Lapin, A. V., Domain decomposition and Uzawa-type iterative method for elliptic variational inequality, Lobachevskii J.Math., 38, 833-842, (2017) · Zbl 1380.65115 · doi:10.1134/S1995080217050353
[33] Lapin, A.; Laitinen, E., Iterative solution of mesh constrained optimal control problems with two-level mesh approximations of parabolic state equation, J. Appl.Math. Phys., 6, 58-68, (2018) · doi:10.4236/jamp.2018.61007
[34] I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976). · Zbl 0322.90046
[35] Ph. G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978). · Zbl 0383.65058
[36] O. Ladyzhenskaya, V. Solonnikov, and N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Vol. 23 of Transl. Math. Monographs (AMS, Providence, RI, 1968). · doi:10.1090/mmono/023
[37] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations (Springer, Berlin, 1997). · Zbl 1151.65339
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.