×

A modified axisymmetric ordinary state-based peridynamics with shear deformation for elastic and fracture problems in brittle solids. (English) Zbl 1473.74009

Summary: Although axisymmetric problems are neither the plane stress nor plane strain problems, they can be solved in the two-dimensional (2-D) domain for convenience. In this paper, a modified axisymmetric ordinary state-based peridynamic model considering the shear deformation for linear elastic solids is proposed. By subtracting the rigid body rotation part from the total deformation, the shear deformation of a bond is considered. The bond force density vector is derived indirectly by equalizing the PD energy density and the classical strain energy density. The fictitious density in adaptive dynamic relaxation (ADR) method is derived. Two new damage criterions based on the maximum stretch/deviatoric strain are proposed. Several axisymmetrically three-dimensional (3-D) numerical examples are performed in the computational domains, where the present numerical results are compared with the existing analytical solutions, the classical finite element numerical results and axisymmetric ordinary state-based peridynamic results. The numerical results demonstrate this proposed method can simulate the initiation and propagation of cracks very well under the axisymmetrical conditions, and it has more accuracy than axisymmetric ordinary state-based peridynamic model.

MSC:

74A70 Peridynamics
74A45 Theories of fracture and damage
74R10 Brittle fracture

Software:

kdtree++
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Areias, P.; Rabczuk, T.; Camanho, P. P., Finite strain fracture of 2D problems with injected anisotropic softening elements, Theor. Appl. Fract. Mech., 72, 50-63 (2014)
[2] Argyris, J. H.; Buck, K.,E.; Grieger, I.; Mareczek, G., Application of the matrix displacement method to the analysis of pressure vessels, J. Eng. Ind., 92, 317-327 (1970)
[3] Bazazzadeh, S.; Shojaei, A.; Zaccariotto, M.; Galvanetto, U., Application of the peridynamic differential operator to the solution of sloshing problems in tanks, Eng. Comput., 36, 45-83 (2019)
[4] Behravan, R., Semi-analytical solution for functionally graded solid circular and annular plates resting on elastic foundations subjected to axisymmetric transverse loading, Adv. Appl. Math. Mech., 4, 205-222 (2012)
[5] Bie, Y. H.; Cui, X. Y.; Li, Z. C., A coupling approach of state-based peridynamics with node-based smoothed finite element method, Comput. Methods Appl. Mech. Eng., 331, 675-700 (2018) · Zbl 1439.74392
[6] Breitenfeld, M. S.; Geubelle, P. H.; Weckner, O.; Silling, S. A., Non-ordinary state-based peridynamic analysis of stationary crack problems, Comput. Methods Appl. Mech. Eng., 272, 233-250 (2014) · Zbl 1296.74099
[7] Butt, S. N.; Timothy, J. J.; Meschke, G., Wave dispersion and propagation in state-based peridynamics, Comput. Mech., 60, 725-738 (2017) · Zbl 1387.74007
[8] Carter, J. P.; Booker, J. R., Creep and consolidation around circular openings in infinite media, Int. J. Solids Struct., 19, 663-675 (1983) · Zbl 0515.73108
[9] Cerioni, A.; Genovese, L.; Mirone, A.; Solo, V. A., Efficient and accurate solver of the three-dimensional screened and unscreened Poisson’s equation with generic boundary conditions, J. Chem. Phys., 137, 134108 (2012)
[10] Chen, H. L., Bond-associated deformation gradients for peridynamic correspondence model, Mech. Res. Commun., 90, 34-41 (2018)
[11] Chen, H. L., A comparison study on peridynamic models using irregular non-uniform spatial discretization, Comput. Methods Appl. Mech. Eng., 345, 539-554 (2019) · Zbl 1440.74023
[12] Cheng, H.; Zhou, X. P., A multi-dimensional space method for dynamic cracks problems using implicit time scheme in the framework of the extended finite element method, Int. J. Damage Mech., 24, 859-890 (2015)
[13] Chowdhury, S. R.; Roy, P.; Roy, D.; Reddy, J. N., A modified peridynamics correspondence principle: removal of zero-energy deformation and other implications, Comput. Methods Appl. Mech. Eng., 346, 530-549 (2019) · Zbl 1440.74036
[14] Chuang, M.; Kazhdan, M. M., Interactive and anisotropic geometry processing using the screened Poisson equation, ACM Trans. Graph., 30, 1-10 (2011)
[15] Diyaroglu, C.; Oterkus, E.; Oterkus, S.; Madenci, E., Peridynamics for bending of beams and plates with transverse shear deformation, Int. J. Solids Struct., 69-70, 152-168 (2015)
[16] Fang, G. D.; Liu, S.; Fu, M. Q.; Wang, B.; Wu, Z. W.; Liang, J., A method to couple state-based peridynamics and finite element method for crack propagation problem, Mech. Res. Commun., 95, 89-95 (2019)
[17] Foster, J. T.; Silling, S. A.; Chen, W. N., An energy based failure criterion for use with peridynamic states, Int. J. Multiscale Comput. Eng., 9, 675-687 (2011)
[18] Genta, G.; Tonoli, A., A harmonic finite element for the analysis of flexural, torsional and axial rotordynamic behaviour of discs, J. Sound Vib., 196, 19-43 (1996)
[19] Gordeliy, E.; Piccinin, R.; Napier, J. A.L.; Detournay, E., Axisymmetric benchmark solutions in fracture mechanics, Eng. Fract. Mech., 102, 348-357 (2013)
[20] Hattori, G.; Trevelyan, J.; Coombs, W. M., A non-ordinary state-based peridynamics framework for anisotropic materials, Comput. Methods Appl. Mech. Eng., 339, 416-442 (2018) · Zbl 1440.74026
[21] Hofacker, M.; Miehe, C., Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation, Int. J. Fract., 178, 113-129 (2012)
[22] Jahed, H.; Dubey, R. N., An axisymmetric method of elastic-plastic analysis capable of predicting residual stress field, J. Press. Vess-T. Asme., 119, 264-273 (1997)
[23] Jrad, M.; Sukumaran, B.; Daouadji, A., Experimental analyses of the behaviour of saturated granular materials during axisymmetric proportional strain paths, Eur. J. Environ. Civ. Eng., 16, 111-120 (2012)
[24] Kazerani, T.; Zhao, G. F.; Zhao, J., Dynamic fracturing simulation of brittle material using the distinct lattice spring method with a full rate-dependent cohesive law, Rock Mech. Rock Eng., 43, 717-726 (2010)
[25] Kilic, B.; Madenci, E., An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theor. Appl. Fract. Mech., 53, 194-204 (2010)
[26] Kim, M. S.; Choi, J. C.; Kim, Y. H.; Huh, G. J.; Kim, C., An automated process planning and die design system for quasi-axisymmetric cold forging products, Int. J. Adv. Manuf. Technol., 20, 201-213 (2002)
[27] Lai, X.; Liu, L. S.; Li, S. F.; Zeleke, M.; Liu, Q. W.; Wang, Z., A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials, Int. J. Impact Eng., 111, 130-146 (2018)
[28] Le, Q. V.; Bobaru, F., Surface corrections for peridynamic models in elasticity and fracture, Comput. Mech., 61, 499-518 (2017) · Zbl 1446.74084
[29] Li, G.; Liang, Z. Z.; Tang, C. A., Morphologic interpretation of rock failure mechanisms under uniaxial compression based on 3D multiscale high-resolution numerical modeling, Rock Mech. Rock Eng., 48, 2235-2262 (2015)
[30] Li, P.; Hao, Z. M.; Zhen, W. Q., A stabilized non-ordinary state-based peridynamic model, Comput. Methods Appl. Mech. Eng., 339, 262-280 (2018) · Zbl 1440.74028
[31] Li, Z. H.; Ma, Q.; Cui, J. Z., Multi-scale modal analysis for axisymmetric and spherical symmetric structures with periodic configurations, Comput. Methods Appl. Mech. Eng., 317, 1068-1101 (2017) · Zbl 1439.74324
[32] Mayr, M.; Drexler, W.; Kuhn, G. A., Semianalytical boundary integral approach for axisymmetric elastic bodies with arbitrary boundary conditions, Int. J. Solids Struct., 16, 863-871 (1980) · Zbl 0441.73107
[33] Miehe, C.; Hofacker, F.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., 199, 2765-2778 (2010) · Zbl 1231.74022
[34] Mossaiby, F.; Shojaei, A.; Zaccariotto, M.; Galvanetto, U., OpenCL implementation of a high performance 3D Peridynamic model on graphics accelerators, Comput. Math. Appl., 74, 1856-1870 (2019) · Zbl 1524.74004
[35] Nanthakumar, S.; Lahmer, T.; Zhuang, X.; Zi, G.; Rabczuk, T., Detection of material interfaces using a regularized level set method in piezoelectric structures, Inverse Probl. Sci. Eng., 24, 153-176 (2016)
[36] Ni, T.; Zaccariotto, M.; Zhu, Q. Z.; Galvanetto, U., Static solution of crack propagation problems in peridynamics, Comput. Methods Appl. Mech. Eng., 346, 126-151 (2019) · Zbl 1440.74034
[37] Ni, T.; Zhu, Q. Z.; Zhao, L. Y.; Li, P. F., Peridynamic simulation of fracture in quasi brittle solids using irregular finite element mesh, Eng. Fract. Mech., 188, 320-343 (2017)
[38] Nied, H. F.; Erdogan, F., The elasticity problem for a thick-walled cylinder containing a circumferential crack, Int. J. Fract., 22, 277-301 (1983)
[39] Nowruzpour, M.; Reddy, J. N., Unification of local and nonlocal models within a stable integral formulation for analysis of defects, Int. J. Eng. Sci., 132, 45-59 (2018) · Zbl 1423.74061
[40] Papargyripegiou, S., Stability of the axisymmetrical analytical and numerical-solutions in a thin-walled pressurized torus of compressible nonlinear elastic-material, Int. J. Eng. Sci., 33, 1005-1025 (1995) · Zbl 0899.73075
[41] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. Methods Eng., 61, 2316-2343 (2004) · Zbl 1075.74703
[42] Rabczuk, T.; Belytschko, T., A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Eng., 196, 2777-2799 (2007) · Zbl 1128.74051
[43] Rabczuk, T.; Ren, H. L., A peridynamics formulation for quasi-static fracture and contact in rock, Eng. Geol., 225, 42-48 (2017)
[44] Rabczuk, T.; Zi, G.; Gerstenberger, A.; Wall, W. A., A new crack tip element for the phantom-node method with arbitrary cohesive cracks, Int. J. Numer. Methods Eng., 75, 577-599 (2010) · Zbl 1195.74193
[45] Rahaman, M. M.; Roy, P.; Roy, D.; Reddy, J. N., A peridynamic model for plasticity: micro-inertia based flow rule, entropy equivalence and localization residuals, Comput. Methods Appl. Mech. Eng., 327, 369-391 (2017) · Zbl 1439.74075
[46] Reiner, J.; Veidt, M.; Dargusch, M.; Gross, L., A progressive analysis of matrix cracking-induced delamination in composite laminates using an advanced phantom node method, J. Compos. Mater., 51, 2933-2947 (2016)
[47] Ren, H. L.; Zhuang, X. Y.; Cai, Y. C.; Rabczuk, T., Dual-horizon peridynamics, Int. J. Numer. Methods Eng., 108, 1451-1476 (2016)
[48] Ren, H. L.; Zhuang, X. Y.; Rabczuk, T., A New Peridynamic Formulation with Shear Deformation for Elastic Solid (2016), arXiv
[49] Ren, H. L.; Zhuang, X. Y.; Rabczuk, T., Dual-horizon peridynamics: a stable solution to varying horizons, Comput. Methods Appl. Mech. Eng., 318, 762-782 (2017) · Zbl 1439.74030
[50] Shina, M.; Tortorellia, D. A.; Noratob, J. A., Optimal shape design of axisymmetric structures subject to asymmetric loading, Comput. Methods Appl. Mech. Eng., 293, 283-305 (2015) · Zbl 1423.74782
[51] Shojaei, A.; Mossaiby, F.; Zaccariotto, M.; Galvanetto, U., An adaptive multi-grid peridynamic method for dynamic fracture analysis, Int. J. Mech. Sci., 144, 600-617 (2018)
[52] Shojaei, A.; Mudric, T.; Zaccariotto, M.; Galvanetto, U., A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis, Int. J. Mech. Sci., 119, 419-431 (2016)
[53] Shojaei, A.; Zaccariotto, M.; Galvanetto, U., Coupling of 2D discretized Peridynamics with a meshless method based on classical elasticity using switching of nodal behaviour, Eng. Comput., 34, 1334-1366 (2017)
[54] Shojaei, A.; Galvanetto, U.; Rabczuk, T.; Jenabi, A.; Zaccariotto, M., A generalized finite difference method based on the peridynamic differential operator for the solution of problems in bounded and unbounded domains, Comput. Methods Appl. Mech. Eng., 343, 100-126 (2019) · Zbl 1440.65157
[55] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175-209 (2000) · Zbl 0970.74030
[56] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 1526-1535 (2005)
[57] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elast., 88, 151-184 (2007) · Zbl 1120.74003
[58] Silling, S. A.; Lehoucq, R. B., Peridynamic theory of solid mechanics, Adv. Appl. Mech., 44, 73-168 (2010)
[59] Sulsky, D.; Schreyer, H. L., Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems, Comput. Methods Appl. Mech. Eng., 139, 409-429 (1996) · Zbl 0918.73332
[60] Tupek, M. R.; Rimoli, J. J.; Radovitzky, R., An approach for incorporating classical continuum damage models in state-based peridynamics, Comput. Methods Appl. Mech. Eng., 263, 20-26 (2013) · Zbl 1286.74022
[61] Wang, L. J.; Rohan, A., A one-dimensional peridynamic model of defect propagation and its relation to certain other continuum models, J. Mech. Phys. Solids, 116, 334-349 (2018) · Zbl 1445.74007
[62] Wang, L. J.; Wang, J. F., On the invariance of governing equations of current nonlocal theories of elasticity under coordinate and gauge transformations, J. Elast. (2019), 2019
[63] Wang, L. J.; Xu, J. F.; Wang, J. X.; Karihaloo, B. L., A mechanism-based spatiotemporal non-local constitutive formulation for elastodynamics of composites, Mech. Mater., 128, 105-116 (2019)
[64] Wang, L. J.; Xu, J. F.; Wang, J. X., The elastodynamics in linearized isotropic stated-based peridynamic material, J. Elast. (2019)
[65] Wang, Y. T.; Zhou, X. P.; Kou, M. M., A coupled thermo-mechanical model based bond-based peridynamics for modeling thermal cracking in rocks, Int. J. Fract., 211, 13-42 (2018)
[66] Wang, Y. T.; Zhou, X. P.; Kou, M. M., An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks, Eur. J. Mech. A Solid., 73, 282-305 (2019) · Zbl 1406.74615
[67] Wang, Y. T.; Zhou, X. P.; Kou, M. M., Peridynamic investigation on the thermal fracturing behaviors in ceramic nuclear fuel pellets under power cycles, Ceram. Int., 44, 11512-11542 (2018)
[68] Wang, Y. T.; Zhou, X. P.; Kou, M. M., Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads, Acta Geotech. (2018)
[69] Wang, Y. T.; Zhou, X. P.; Shou, Y. D., The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics, Int. J. Mech. Sci., 128-129, 614-643 (2017)
[70] Wang, Y. T.; Zhou, X. P.; Wang, Y.; Shou, Y. D., A 3D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids, Int. J. Solids Struct., 134, 89-115 (2018)
[71] Wang, Y. T.; Zhou, X. P.; Xu, X., Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics, Eng. Fract. Mech., 163, 248-273 (2016)
[72] Wei, H. P.; Fu, S.; Wu, Q.; Huang, B. A.; Wang, G. Y., Experimental and numerical research on cavitating flows around axisymmetric bodies, J. Mech. Sci. Technol., 28, 4527-4537 (2014)
[73] Wei, K.; Bouaanani, N.; Yuan, W., Simplified methods for efficient seismic design and analysis of water-surrounded composite axisymmetric structures, Ocean Eng., 104, 617-638 (2015)
[74] Wheeler, A. A.; Boettinger, W. J.; Mcfadden, G. B., Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A, 45, 7424-7439 (1992)
[75] Wieckowski, Z., The material point method in large strain engineering problems, Comput. Methods Appl. Mech. Eng., 193, 4417-4438 (2004) · Zbl 1068.74085
[76] Wilson, E. L., Structural analysis of axisymmetric solids, AIAA J., 3, 2269-2274 (1965)
[77] Wong, L. N.Y.; Li, H. Q., Numerical study on coalescence of two pre-existing coplanar flaws in rock, Int. J. Solids Struct., 50, 3685-3706 (2013)
[78] Wu, C. T.; Ren, B., Localized particle boundary condition enforcements for the state-based peridynamics, Coupled Sys. Mech., 4, 1-18 (2015)
[79] Xie, Y.; Cao, P.; Liu, J.; Dong, L., Influence of crack surface friction on crack initiation and propagation: a numerical investigation based on extended finite element method, Comput. Geotech., 74, 1-14 (2016)
[80] Yaghoobi, A.; Chorzepa, M. G., Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics, Comput. Struct., 188, 63-79 (2017)
[81] Zaccariotto, M.; Mudric, T.; Tomasi, D.; Shojaei, A.; Galvanetto, U., Coupling of fem meshes with peridynamic grids, Comput. Methods Appl. Mech. Eng., 330, 471-497 (2018) · Zbl 1439.65103
[82] Zhang, H.; Qiao, P. Z., A coupled peridynamic strength and fracture criterion for open-hole failure analysis of plates under tensile load, Eng. Fract. Mech., 204, 103-118 (2018)
[83] Zhang, H.; Qiao, P. Z., A state-based peridynamic model for quantitative fracture analysis, Int. J. Fract., 211, 217-235 (2018)
[84] Zhang, H.; Qiao, P. Z., An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading, Eng. Fract. Mech., 189, 81-97 (2018)
[85] Zhang, H.; Qiao, P. Z., A state-based peridynamic model for quantitative elastic and fracture analysis of orthotropic materials, Eng. Fract. Mech., 206, 147-171 (2019)
[86] Zhang, Y.; Qiao, P. Z., An axisymmetric ordinary state-based peridynamic model for linear elastic solids, Comput. Methods Appl. Mech. Eng., 341, 517-550 (2018) · Zbl 1440.74047
[87] Zhang, J. Z.; Zhou, X. P.; Zhu, J. Y.; Xian, C.; Wang, Y. T., Quasi-static fracturing in double-flawed specimens under uniaxial loading: the role of strain rate, Int. J. Fract., 211, 75-102 (2018)
[88] Zhou, X. P.; Gu, X. B.; Wang, Y. T., Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks, Int. J. Rock Mech. Min. Sci., 80, 241-254 (2015)
[89] Zhou, X. P.; Shou, Y. D., Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method, Int. J. Geomech., 17, Article 04016086 pp. (2017)
[90] Zhou, X. P.; Wang, Y. T., Numerical simulation of crack propagation and coalescence in pre-cracked rock-like disks using the non-ordinary state-based peridynamics, Int. J. Rock Mech. Min. Sci., 89, 235-249 (2016)
[91] Zhou, X. P.; Wang, Y. T.; Qian, Q. H., Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics, Eur. J. Mech. A Solid., 60, 277-299 (2016) · Zbl 1406.74621
[92] Zhou, X. P.; Wang, Y. T.; Shou, Y. D.; Kou, M. M., A novel conjugated bond linear elastic model in bond-based peridynamics for dynamic fracture simulation, Eng. Fract. Mech., 188, 151-183 (2018)
[93] Zhou, X. P.; Wang, Y. T.; Xu, X., Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics, Int. J. Fract., 201, 213-234 (2016)
[94] Zhu, Q. Z.; Ni, T., Peridynamic formulations enriched with bond rotation effects, Int. J. Eng. Sci., 121, 118-129 (2017) · Zbl 1423.74072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.