×

Planar random-cluster model: fractal properties of the critical phase. (English) Zbl 1475.60195

Summary: This paper is studying the critical regime of the planar random-cluster model on \(\mathbb{Z}^2\) with cluster-weight \(q\in [1,4)\). More precisely, we prove crossing estimates in quads which are uniform in their boundary conditions and depend only on their extremal lengths. They imply in particular that any fractal boundary is touched by macroscopic clusters, uniformly in its roughness or the configuration on the boundary. Additionally, they imply that any sub-sequential scaling limit of the collection of interfaces between primal and dual clusters is made of loops that are non-simple. We also obtain a number of properties of so-called arm-events: three universal critical exponents (two arms in the half-plane, three arms in the half-plane and five arms in the bulk), quasi-multiplicativity and well-separation properties (even when arms are not alternating between primal and dual), and the fact that the four-arm exponent is strictly smaller than 2. These results were previously known only for Bernoulli percolation \((q=1)\) and the FK-Ising model \((q=2)\). Finally, we prove new bounds on the one, two and four-arm exponents for \(q\in [1,2]\), as well as the one-arm exponent in the half-plane. These improve the previously known bounds, even for Bernoulli percolation.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aizenman, M.; Burchard, A., Hölder regularity and dimension bounds for random curves, Duke Math. J., 99, 419-453 (1999) · Zbl 0944.60022 · doi:10.1215/S0012-7094-99-09914-3
[2] Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press Inc, London (1989) [Harcourt Brace Jovanovich Publishers], Reprint of the 1982 original · Zbl 0723.60120
[3] Beffara, V.; Duminil-Copin, H., The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\), Probab. Theory Relat. Fields, 153, 3-4, 511-542 (2012) · Zbl 1257.82014 · doi:10.1007/s00440-011-0353-8
[4] Beffara, V.; Duminil-Copin, H., Lectures on planar percolation with a glimpse of Schramm Loewner Evolution, Probab. Surv., 10, 1-50 (2013) · Zbl 1283.60118 · doi:10.1214/11-PS186
[5] Beffara, V.; Duminil-Copin, H.; Smirnov, S., On the critical parameters of the \(q\ge 4\) random-cluster model on isoradial graphs, J. Phys. A, 48, 48, 484003 (2015) · Zbl 1342.82018 · doi:10.1088/1751-8113/48/48/484003
[6] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 2, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[7] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys., 34, 5-6, 763-774 (1984) · doi:10.1007/BF01009438
[8] Biskup, M.; Borgs, C.; Chayes, JT; Kotecký, R., Gibbs states of graphical representations of the Potts model with external fields, J. Math. Phys., 41, 3, 1170-1210 (2000) · Zbl 0977.82012 · doi:10.1063/1.533183
[9] Chelkak, D., Duminil-Copin, H., Hongler, C.: Crossing probabilities in topological rectangles for the critical planar FK-Ising model. Electron. J. Probab. 5, 28 pages (2016) · Zbl 1341.60124
[10] Chelkak, D.; Duminil-Copin, H.; Hongler, C.; Kemppainen, A.; Smirnov, S., Convergence of Ising interfaces to Schramm’s SLE curves, C. R. Acad. Sci. Paris Math., 352, 2, 157-161 (2014) · Zbl 1294.82007 · doi:10.1016/j.crma.2013.12.002
[11] Camia, F.; Jiang, J.; Newman, CM, Exponential decay for the near-critical scaling limit of the planar Ising model, Commun. Pure Appl. Math., 73, 1371-1405 (2020) · Zbl 1446.82004 · doi:10.1002/cpa.21884
[12] Camia, F.; Newman, CM, Two-dimensional critical percolation: the full scaling limit, Commun. Math. Phys., 268, 1-38 (2006) · Zbl 1117.60086 · doi:10.1007/s00220-006-0086-1
[13] Camia, F.; Newman, CM, Critical percolation exploration path and \({\rm SLE}_6\): a proof of convergence, Probab. Theory Relat. Fields, 139, 3-4, 473-519 (2007) · Zbl 1126.82007 · doi:10.1007/s00440-006-0049-7
[14] Duminil-Copin, H.: Lectures on the Ising and Potts models on the hypercubic lattice. Random Graphs, Phase Transitions and the Gaussian Free Field, PIMS-CRM Summer School in Probability. arXiv:1707.00520 (2019)
[15] Duminil-Copin, H.: Parafermionic observables and their applications to planar statistical physics models. Ensaios Matematicos, vol. 25. Brazilian Mathematical Society (2013) · Zbl 1298.82001
[16] Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I., Tassion, V.: Discontinuity of the phase transition for the planar random-cluster and Potts models with \(q >4\). arXiv:1611.09877 (2016) · Zbl 1430.60080
[17] Duminil-Copin, H., Glazman, A., Peled, R., Spinka, Y.: Macroscopic loops in the loop O(n) model at Nienhuis’ critical point. J. Eur. Math. Soc. 23, 315-347 (2021) · Zbl 1477.60137
[18] Duminil-Copin, H.; Hongler, C.; Nolin, P., Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Commun. Pure Appl. Math., 64, 9, 1165-1198 (2011) · Zbl 1227.82015 · doi:10.1002/cpa.20370
[19] Duminil-Copin, H., Manolescu, I.: Planar random-cluster model: scaling relations. arXiv:2011.15090 (2020) · Zbl 1356.60167
[20] Duminil-Copin, H.; Manolescu, I., The phase transitions of the planar random-cluster and Potts models with \(q \ge 1\) are sharp, Probab. Theory Relat. Fields, 164, 3, 865-892 (2016) · Zbl 1356.60167 · doi:10.1007/s00440-015-0621-0
[21] Duminil-Copin, H.; Raoufi, A.; Tassion, V., A new computation of the critical point for the planar random-cluster model with \(q \ge 1\), Ann. Inst. H. Poincaré Probab. Statist., 54, 1, 422-436 (2018) · Zbl 1395.82043 · doi:10.1214/16-AIHP809
[22] Duminil-Copin, H.; Raoufi, A.; Tassion, V., Sharp phase transition for the random-cluster and Potts models via decision trees, Ann. Math., 189, 1, 75-99 (2019) · Zbl 1482.82009 · doi:10.4007/annals.2019.189.1.2
[23] Duminil-Copin, H.; Sidoravicius, V.; Tassion, V., Continuity of the phase transition for planar random-cluster and Potts models with \(1\le q\le 4\), Commun. Math. Phys., 349, 1, 47-107 (2017) · Zbl 1357.82011 · doi:10.1007/s00220-016-2759-8
[24] Duminil-Copin, H., Smirnov, S.: The connective constant of the honeycomb lattice equals \(\sqrt{2+\sqrt{2}} \). Ann. Math. (2), 175(3), 1653-1665 (2012) · Zbl 1253.82012
[25] Duminil-Copin, H., Tassion, V.: Renormalization of crossing probabilities in the planar random-cluster model. arXiv:1901.08294 (2019) · Zbl 1482.82034
[26] Fisher, M., Renormalization group theory: its basis and formulation in statistical physics, Rev. Mod. Phys., 70, 2, 653-681 (1998) · Zbl 1205.82072 · doi:10.1103/RevModPhys.70.653
[27] Fortuin, CM; Kasteleyn, PW, On the random-cluster model. I. Introduction and relation to other models, Physica, 57, 536-564 (1972) · doi:10.1016/0031-8914(72)90045-6
[28] Fortuin, C.M.: On the Random-cluster model. Doctoral thesis, University of Leiden (1971)
[29] Garban, C.; Pete, G.; Schramm, O., The scaling limits of near-critical and dynamical percolation, J. Eur. Math. Soc., 20, 5, 1195-1268 (2018) · Zbl 1392.60078 · doi:10.4171/JEMS/786
[30] Garban, C.; Wu, H., On the convergence of FK-Ising Percolation to SLE \((16/3,16/3-6)\), J. Theor. Probab., 33, 828-865 (2018) · Zbl 1434.60230 · doi:10.1007/s10959-019-00950-9
[31] Grimmett, G., The Random-Cluster Model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2006), Berlin: Springer, Berlin · Zbl 0858.60093
[32] Kemppainen, A.; Smirnov, S., Random curves, scaling limits and Loewner evolutions, Ann. Probab., 45, 2, 698-779 (2017) · Zbl 1393.60016 · doi:10.1214/15-AOP1074
[33] Kemppainen, A., Smirnov, S.: Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE. arXiv:1609.08527 (2016)
[34] Kesten, H., Sidoravicius, V., Zhang, Y.: Almost all words are seen in critical site percolation on the triangular lattice. Electron. J. Probab., 3, paper no. 10 (1998) · Zbl 0908.60082
[35] Kiss, D.; Manolescu, I.; Sidoravicius, V., Planar lattices do not recover from forest fires, Ann. Probab., 43, 6, 3216-3238 (2015) · Zbl 1337.60244 · doi:10.1214/14-AOP958
[36] Lawler, GF; Schramm, O.; Werner, W., Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., 32, 939-995 (2004) · Zbl 1126.82011 · doi:10.1214/aop/1079021469
[37] McCoy, B.M., Wu, T.T.: Ising model correlation functions: difference equations and applications to gauge theory, Nonlinear integrable systems-classical theory and quantum theory (Kyoto, 1981), pp. 121-134 (1981)
[38] Miller, J., Sheffield, S., Werner, W.: CLE percolations. In: Forum of Mathematics, Pi (vol. 5). Cambridge University Press · Zbl 1390.60356
[39] Nolin, P., Near-critical percolation in two dimensions, Electron. J. Probab., 13, 1562-1623 (2008) · Zbl 1189.60182 · doi:10.1214/EJP.v13-565
[40] Ikhlef, Y.; Ponsaing, A., Finite-size left-passage probability in percolation, J. Stat. Phys., 149, 10-36 (2012) · Zbl 1254.82016 · doi:10.1007/s10955-012-0573-z
[41] Ray, G., Spinka, Y.: A short proof of the discontinuity of phase transition in the planar random-cluster model with \(q>4\). Commun. Math. Phys. 378(3), 1977-1988 (2020) · Zbl 1453.82017
[42] Russo, L., A note on percolation, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 43, 1, 39-48 (1978) · Zbl 0363.60120 · doi:10.1007/BF00535274
[43] Rohde, S.; Schramm, O., Basic properties of SLE, Ann. Math., 161, 883-924 (2005) · Zbl 1081.60069 · doi:10.4007/annals.2005.161.883
[44] Schramm, O.; Sheffield, S.; Wilson, DB, Conformal radii for conformal loop ensembles, Commun. Math. Phys., 288, 1, 43-53 (2009) · Zbl 1187.82044 · doi:10.1007/s00220-009-0731-6
[45] Schramm, O.; Smirnov, S., On the scaling limits of planar percolation, Ann. Probab., 39, 5, 1768-1814 (2011) · Zbl 1231.60116 · doi:10.1214/11-AOP659
[46] Schramm, O.; Steif, J., Quantitative noise sensitivity and exceptional times for percolation, Ann. Math., 171, 619-672 (2010) · Zbl 1213.60160 · doi:10.4007/annals.2010.171.619
[47] Seymour, PD; Welsh, DJA, Percolation probabilities on the square lattice, Ann. Discrete Math., 3, 227-245 (1978) · Zbl 0405.60015 · doi:10.1016/S0167-5060(08)70509-0
[48] Sheffield, S., Exploration trees and conformal loop ensembles, Duke Math. J., 147, 79-129 (2009) · Zbl 1170.60008 · doi:10.1215/00127094-2009-007
[49] Sheffield, S.; Werner, W., Conformal loop ensembles: the Markovian characterization and the loop-soup construction, Ann. Math., 176, 1827-1917 (2012) · Zbl 1271.60090 · doi:10.4007/annals.2012.176.3.8
[50] Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3), 239-244 (2001) · Zbl 0985.60090
[51] Smirnov, S., Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. Math., 172, 2, 1435-1467 (2010) · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1435
[52] Smirnov, S.; Werner, W., Critical exponents for two-dimensional percolation, Math. Res. Lett., 8, 5-6, 729-744 (2001) · Zbl 1009.60087 · doi:10.4310/MRL.2001.v8.n6.a4
[53] Wu, H., Alternating arm exponents for the critical planar Ising model, Ann. Probab., 46, 5, 2863-2907 (2018) · Zbl 1428.60119 · doi:10.1214/17-AOP1241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.