×

Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. (English) Zbl 1479.35136

Summary: We consider in this paper a perturbation of the standard semilinear heat equation by a term involving the space derivative and a non-local term. In some earlier work [1], we constructed a blow-up solution for that equation, and showed that it blows up (at least) at the origin. We also derived the so called “intermediate blow-up profile”. In this paper, we prove the single point blow-up property and determine the final blow-up profile.

MSC:

35B44 Blow-up in context of PDEs
35K15 Initial value problems for second-order parabolic equations
35K58 Semilinear parabolic equations
35R09 Integro-partial differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] B. Abdelhedi; H. Zaag, Construction of a blow-up solution for a perturbed nonlinear heat equation with a gradient and a non-local term, J. Differential Equations, 272, 1-45 (2021) · Zbl 1454.35221
[2] J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser.(2), 28, 473-486 (1977) · Zbl 0377.35037
[3] M. Berger; R. V. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., 41, 841-863 (1988) · Zbl 0652.65070
[4] J. Bricmont; A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 539-575 (1994) · Zbl 0857.35018
[5] M. Chipot; F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal., 20, 886-907 (1989) · Zbl 0682.35010
[6] G. K. Duong; H. Zaag, Profile of touch-down solution to a nonlocal MEMS model, Math. Models Methods Appl. Sci., 29, 1279-1348 (2019) · Zbl 1425.35116
[7] S. Filippas; R. V. Kohn, Refined asymptotics for the blow-up of \(u_t-\Delta u = u^p\), Comm. Pure Appl. Math., 45, 821-869 (1992) · Zbl 0784.35010
[8] S. Filippas; W. X. Liu., On the blowup of multidimensional semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 313-344 (1993) · Zbl 0815.35039
[9] H. Fujita, On the blowing up of solutions of the Cauchy problem for \(u_t = \Delta u+u^{1+\alpha}\), J. Fac. Sci. Univ. Tokyo Sect. I, 13, 109-124 (1966) · Zbl 0163.34002
[10] V. A. Galaktionov; J. L. Vázquez, Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., 24, 1254-1276 (1993) · Zbl 0813.35033
[11] V. A. Galaktionov; J. L. Vázquez, Blow-up for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations, J. Differential Equations, 127, 1-40 (1996) · Zbl 0884.35014
[12] Y. Giga; R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38, 297-319 (1985) · Zbl 0585.35051
[13] Y. Giga; R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36, 1-40 (1987) · Zbl 0601.35052
[14] Y. Giga; R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42, 845-884 (1989) · Zbl 0703.35020
[15] M. A. Herrero; J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, 5, 973-997 (1992) · Zbl 0767.35036
[16] M. A. Herrero; J. J. L. Velázquez, Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19, 381-450 (1992) · Zbl 0798.35081
[17] M. A. Herrero; J. J. L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10, 131-189 (1993) · Zbl 0813.35007
[18] M. A. Herrero; J. J. L. Velázquez, Comportement générique au voisinage d’un point d’explosion pour des solutions d’équations paraboliques unidimensionnelles, C. R. Acad. Sci. Paris Sér. I Math., 314, 201-203 (1992) · Zbl 0765.35009
[19] F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math., 45, 263-300 (1992) · Zbl 0785.35012
[20] F. Merle; H. Zaag, Stability of the blow-up profile for equations of the type \(u_t = \Delta u +|u|^{p-1} u\), Duke Math. J., 86, 143-195 (1997) · Zbl 0872.35049
[21] F. Merle; H. Zaag, Stabilité du profil à l’explosion pour les équations du type \(u_t = \Delta u+\vert u\vert^{p-1}u\), C. R. Acad. Sci. Paris Sér. I Math., 322, 345-350 (1996) · Zbl 0846.35060
[22] V. T. Nguyen, Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time, Phys. D, 339, 49-65 (2017) · Zbl 1376.35088
[23] V. T. Nguyen; H. Zaag, Blow-up results for a strongly perturbed semilinear heat equation: Theoretical analysis and numerical method, Anal. PDE, 9, 229-257 (2016) · Zbl 1334.35148
[24] P. Quittner and P. Souplet, Superlinear parabolic Problems. Blow-up, Global Existence and Steady States, Second Edition. Birkhäuser Advanced Texts, 2019. · Zbl 1423.35004
[25] P. Souplet; S. Tayachi; F. B. Weissler, Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term, Indiana Univ. Math. J., 45, 655-682 (1996) · Zbl 0990.35061
[26] S. Tayachi; H. Zaag, Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, Trans. Amer. Math. Soc., 371, 5899-5972 (2019) · Zbl 1423.35186
[27] S. Tayachi and H. Zaag, Existence and stability of a blow-up solution with a new prescribed behavior for a heat equation with a critical nonlinear gradient term, Actes du Colloque EDP-Normandie, Le Havre, 21-22, octobre 2015.
[28] F. B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55, 204-224 (1984) · Zbl 0555.35061
[29] H. Zaag, Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 581-622 (1998) · Zbl 0902.35050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.