×

Barrier solutions of elliptic differential equations in Musielak-Orlicz-Sobolev spaces. (English) Zbl 1479.35301

Summary: In this paper, we study the solution set of the following Dirichlet boundary equation: \(-\operatorname{div}(a_1 (x, u, Du))+ a_0(x, u)=f(x, u, Du)\) in Musielak-Orlicz-Sobolev spaces, where \(a_1:\Omega\times\mathbb{R}\times \mathbb{R}^N\longrightarrow \mathbb{R}^N\), \(a_0:\Omega\times\mathbb{R}\longrightarrow\mathbb{R}\), and \(f:\Omega\times\mathbb{R}\times \mathbb{R}^N\longrightarrow\mathbb{R}\) are all Carathéodory functions. Both \(a_1\) and \(f\) depend on the solution \(u\) and its gradient \(Du\). By using a linear functional analysis method, we provide sufficient conditions which ensure that the solution set of the equation is nonempty, and it possesses a greatest element and a smallest element with respect to the ordering “\(\leq\)”, which are called barrier solutions.

MSC:

35J25 Boundary value problems for second-order elliptic equations
35J62 Quasilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fan, X. L., Differential equations of divergence form in Musielak-Sobolev spaces and a sub-supersolution method, Journal of Mathematical Analysis and Applications, 386, 2, 593-604 (2012) · Zbl 1270.35156 · doi:10.1016/j.jmaa.2011.08.022
[2] Dong, G.; Fang, X. C., Differential equations of divergence form in separable Musielak-Orlicz-Sobolev spaces, Boundary Value Problems, 2016, 1, 19 (2016) · Zbl 1343.35087 · doi:10.1186/s13661-016-0612-9
[3] Carl, S.; Le, V. K., Elliptic inequalities with multi-valued operators: existence, comparison and related variational-hemivariational type inequalities, Nonlinear Analysis: Theory, Methods & Applications, 121, 130-152 (2015) · Zbl 1319.35059 · doi:10.1016/j.na.2014.10.033
[4] Carl, S., Barrier solutions of elliptic variational inequalities, Nonlinear Analysis: Real World Applications, 26, 75-92 (2015) · Zbl 1330.35184 · doi:10.1016/j.nonrwa.2015.04.004
[5] Chipot, M.; Guesmia, S.; Harkat, S., On the minimal solution for some variational inequalities, Journal of Differential Equations, 266, 1, 493-525 (2019) · Zbl 1497.35250 · doi:10.1016/j.jde.2018.07.052
[6] Gwiazda, P.; Skrzypczak, I.; Zatorska-Goldstein, A., Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space, Journal of Differential Equations, 264, 1, 341-377 (2018) · Zbl 1376.35046 · doi:10.1016/j.jde.2017.09.007
[7] Chlebicka, I.; Karppinen, A., Removable sets in elliptic equations with Musielak-Orlicz growth, Journal of Mathematical Analysis and Applications, 501, 1, article 124073 (2021) · Zbl 1479.35282 · doi:10.1016/j.jmaa.2020.124073
[8] Le, V. K., On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 3305-3321 (2009) · Zbl 1179.35148 · doi:10.1016/j.na.2009.01.211
[9] Faria, L. F. O.; Miyagaki, O. H.; Motreanu, D.; Tanaka, M., Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, Nonlinear Analysis: Theory, Methods & Applications, 96, 154-166 (2014) · Zbl 1285.35014 · doi:10.1016/j.na.2013.11.006
[10] Liu, J.; Pucci, P.; Wu, H.; Zhang, Q., Existence and blow-up rate of large solutions of p(x)-Laplacian equations with gradient terms, Journal of Mathematical Analysis and Applications, 457, 1, 944-977 (2018) · Zbl 1378.35148 · doi:10.1016/j.jmaa.2017.08.038
[11] Gossez, J., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Transactions of the American Mathematical Society, 190, 163-205 (1974) · Zbl 0239.35045 · doi:10.1090/S0002-9947-1974-0342854-2
[12] Gossez, J., Some approximation properties in Orlicz-Sobolev spaces, Studia Mathematica, 74, 1, 17-24 (1982) · Zbl 0503.46018 · doi:10.4064/sm-74-1-17-24
[13] Dong, G.; Shi, Z. R., An existence theorem for weak solutions for a class of elliptic partial differential systems in Orlicz spaces, Nonlinear Analysis: Theory, Methods & Applications, 68, 4, 1037-1042 (2008) · Zbl 1260.35049 · doi:10.1016/j.na.2006.12.004
[14] Dong, G., An existence theorem for weak solutions for a class of elliptic partial differential systems in general Orlicz-Sobolev spaces, Nonlinear Analysis: Theory, Methods & Applications, 69, 7, 2049-2057 (2008) · Zbl 1158.35354 · doi:10.1016/j.na.2007.07.043
[15] Dong, G., Elliptic equations with measure data in Orlicz spaces, Electronic Journal of Differential Equations, 76, 1-10 (2008) · Zbl 1173.35465
[16] Dong, G.; Fang, X. C., Variational inequalities with multivalued lower order terms and convex functionals in Orlicz-Sobolev spaces, Journal of Function Spaces, 2015 (2015) · Zbl 1321.47129 · doi:10.1155/2015/321437
[17] Dong, G.; Fang, X. C., The sub-supersolution method and extremal solutions of quasilinear elliptic equations in Orlicz-Sobolev spaces, Journal of Function Spaces, 2018 (2018) · Zbl 1400.35123
[18] Dong, G.; Fang, X. C., Positive solutions to nonlinear inclusion problems in Orlicz-Sobolev spaces, Applicable Analysis, 100, 7, 1440-1453 (2021) · Zbl 1465.35162 · doi:10.1080/00036811.2019.1645327
[19] Bashir, Z.; Guirao, J. L. G.; Siddique, A.; Saeed, T., Generalized concentration-compactness principles for variable exponent Lebesgue spaces with asymptotic analysis of low energy extremals, Mathematics, 8, 10, article 1849 (2020) · doi:10.3390/math8101849
[20] Chen, P.; Tang, X., Periodic solutions for a differential inclusion problem involving the p(t)-Laplacian, Advances in Nonlinear Analysis, 10, 1, 799-815 (2021) · Zbl 1471.34043 · doi:10.1515/anona-2020-0156
[21] Lu, G., Commutators of bilinear pseudo-differential operators on local Hardy spaces with variable exponents, Bulletin of the Brazilian Mathematical Society, 51, 4, 975-1000 (2020) · Zbl 1460.42021 · doi:10.1007/s00574-019-00184-7
[22] Ragusa, M. A.; Tachikawa, A., On interior regularity of minimizers of p(x)-energy functionals, Nonlinear Analysis: Theory, Methods & Applications, 93, 162-167 (2013) · Zbl 1281.49036 · doi:10.1016/j.na.2013.07.023
[23] Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math (1983), Berlin: Springer-Verlag, Berlin · Zbl 0557.46020
[24] Wu, C.; Wang, T.; Chen, S.; Wang, Y., Geometry Theory of Orlicz Spaces (1986), Harbin: Harbin University of Technology Press, Harbin
[25] Benkirane, A.; Sidi El Vally, M., Variational inequalities in Musielak-Orlicz-Sobolev spaces, Bulletin of the Belgian Mathematical Society, Simon Stevin, 21, 5, 787-811 (2014) · Zbl 1326.35142 · doi:10.36045/bbms/1420071854
[26] Rodrigues, J.; Teymurazyan, R., On the two obstacles problem in Orlicz-Sobolev spaces and applications, Complex Variables and Elliptic Equations, 56, 7-9, 769-787 (2011) · Zbl 1225.35110 · doi:10.1080/17476933.2010.505016
[27] Dong, G.; Fang, X. C., Existence results for some nonlinear elliptic equations with measure data in Orlicz-Sobolev spaces, Boundary Value Problems, 2015, 1 (2015) · Zbl 1515.35294 · doi:10.1186/s13661-014-0278-0
[28] Benkirane, A.; Val, M. O. M., Some approximation properties in Musielak-Orlicz-Sobolev spaces, Thai Journal of Mathematics, 10, 2, 371-381 (2012) · Zbl 1264.46024
[29] Carl, S.; Le, V. K.; Motreanu, D., Nonsmooth Variational Problems and Their Inequalitiess: Comparison Principles and Applications, Springer Monographs in Mathematics (2007), New York, NY, USA: Springer, New York, NY, USA · Zbl 1109.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.