Splitting of coupled bright solitons in two-component Bose-Einstein condensates under parametric perturbation. (English) Zbl 1479.35758

Summary: We analyze the dynamics of bright-bright solitons in two-component Bose-Einstein condensates (BECs) subject to parametric perturbations using the variational approach and direct numerical simulations. The system is described by a vector nonlinear Schrödinger equation (NLSE) appropriate to coupled multi-component BECs. A periodic variation of the inter-component coupling coefficient is used to explore nonlinear resonances and splitting of the coupled bright solitons. The analytical predictions are confirmed by direct numerical simulations of the vector NLSE.


35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35C08 Soliton solutions
35B20 Perturbations in context of PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
82D05 Statistical mechanics of gases
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
Full Text: DOI


[1] Clark, L. W.; Gaj, A.; Feng, L.; Chin, C., Collective emission of matter-wave jets from driven Bose-Einstein condensates, Nature, 551, 356 (2017)
[2] Fu, H.; Feng, L.; Anderson, B. M.; Clark, L. W.; Hu, J.; Andrade, J. W.; Chin, C.; Levin, K., Density waves and jet emission asymmetry in Bose fireworks, Phys. Rev. Lett., 121, Article 243001 pp. (2018)
[3] Wu, Z.; Zhai, H., Dynamics and density correlations in matter-wave jet emission of a driven condensate, Phys. Rev. A, 99, Article 063624 pp. (2019)
[4] Nguyen, J. H.V.; Tsatsos, M. C.; Luo, D.; Lode, A. U.J.; Telles, G. D.; Bagnato, V. S.; Hulet, R. G., Parametric excitation of a Bose-Einstein condensate: from Faraday waves to granulation, Phys. Rev. X, 9, Article 011052 pp. (2019)
[5] (Kevrekidis, P. G.; Frantzeskakis, D. J.; Carretero-González, R., Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (2008), Springer-Verlag: Springer-Verlag Berlin, Heidelberg) · Zbl 1137.82003
[6] Kevrekidis, P. G.; Frantzeskakis, D. J., Solitons in coupled nonlinear Schrödinger models: a survey of recent developments, Rev. Phys., 1, 140 (2016)
[7] Becker, C.; Stellmer, S.; Soltan-Panahi, P.; Dörscher, S.; Baumert, M.; Richter, E.-M.; Kronjäger, J.; Bongs, K.; Sengstock, K., Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates, Nat. Phys., 4, 496 (2008)
[8] Hoefer, M. A.; Chang, J. J.; Hamner, C.; Engels, P., Dark-dark solitons and modulational instability in miscible two-component Bose-Einstein condensates, Phys. Rev. A, 84 (2011), 041605(R)
[9] Adhikari, S. K., Bright solitons in coupled defocusing NLS equation supported by coupling: application to Bose-Einstein condensation, Phys. Lett. A, 346, 179 (2005) · Zbl 1195.82017
[10] Pérez-Garcia, V. M.; Beitia, J. B., Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates, Phys. Rev. A, 72, Article 033620 pp. (2005)
[11] Ueda, T.; Kath, W. L., Dynamics of coupled solitons in nonlinear optical fibers, Phys. Rev. A, 42, 563 (1990)
[12] Kaup, D. J.; Malomed, B. A.; Tasgal, R. S., Internal dynamics of a vector soliton in a nonlinear optical fiber, Phys. Rev. E, 48, 3049 (1993)
[13] Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E., Feshbach resonances in ultracold gases, Rev. Mod. Phys., 82, 1225 (2010)
[14] Anderson, D., Variational approach to nonlinear pulse propagation in optical fibers, Phys. Rev. A, 27, 1393 (1983)
[15] Malomed, B. A.; Wolf, E., Variational methods in nonlinear fiber optics and related fields, Progr. Opt., vol. 43, 69-191 (2002), North-Holland: North-Holland Amsterdam
[16] Landau, L. D.; Lifshitz, E. M., Mechanics, Vol. 1, Course of Theoretical Physics (1969), Pergamon Press: Pergamon Press Oxford
[17] Baizakov, B.; Filatrella, G.; Malomed, B.; Salerno, M., Double parametric resonance for matter-wave solitons in a time-modulated trap, Phys. Rev. E, 71, Article 036619 pp. (2005)
[18] Agrawal, G. P., Nonlinear Fiber Optics (1995), Academic Press: Academic Press New York
[19] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes: The Art of Scientific Computing (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0892.65001
[20] Kasamatsu, K.; Tsubota, M., Modulation instability and solitary-wave formation in two-component Bose-Einstein condensates, Phys. Rev. A, 74, Article 013617 pp. (2006)
[21] Thalhammer, G.; Barontini, G.; De Sarlo, L.; Catani, J.; Minardi, F.; Inguscio, M., Double species Bose-Einstein condensate with tunable interspecies interactions, Phys. Rev. Lett., 100, Article 210402 pp. (2008)
[22] Cornish, S. L.; Thompson, S. T.; Wieman, C. E., Formation of bright matter-wave solitons during the collapse of attractive Bose-Einstein condensates, Phys. Rev. Lett., 96, Article 170401 pp. (2006)
[23] Marchant, A. L.; Billam, T. P.; Wiles, T. P.; Yu, M. M.H.; Gardiner, S. A.; Cornish, S. L., Controlled formation and reflection of a bright solitary matter-wave, Nat. Commun., 4, 1865 (2013)
[24] Lepoutre, S.; Fouché, L.; Boissé, A.; Berthet, G.; Salomon, G.; Aspect, A.; Bourdel, T., Production of strongly bound^39K bright solitons, Phys. Rev. A, 94, Article 053626 pp. (2016)
[25] Egorov, M.; Opanchuk, B.; Drummond, P.; Hall, B. V.; Hannaford, P.; Sidorov, A. I., Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate, Phys. Rev. A, 87, Article 053614 pp. (2013)
[26] Altin, P. A.; Robins, N. P.; Döring, D.; Debs, J. E.; Poldy, R.; Figl, C.; Close, J. D.,^85Rb tunable-interaction Bose-Einstein condensate machine, Rev. Sci. Instrum., 81, Article 063103 pp. (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.