×

Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. (English) Zbl 1480.74137

Summary: This paper deals with free vibration analysis of functionally graded composite shell structures reinforced by carbon nanotubes. Uniform and three distributions of carbon nanotubes which are graded in the thickness direction of the structure are considered. The effective material properties are determined via a micro-mechanical model using some efficiency parameters. The equations of motion are developed based on a discrete double directors shell finite element formulation which introduces the transverse shear deformations via a higher-order distribution of the displacement field. Comparison studies are carried out for various functionally graded composite shell structures reinforced by carbon nanotubes in order to highlight the applicability and the efficiency of the proposed model in the prediction of the vibrational behavior of such shell structures.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Thostenson, E.; Ren, Z.; Chou, T., Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61, 1899-1912 (2001)
[2] Seidel, G.; Lagoudas, D., Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites, Mech. Mater., 38, 884-907 (2006)
[3] Anumandla, V.; Gibson, R., A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites, Compos.: Part A, 37, 2178-2185 (2006)
[4] Esawi, A.; Farag, M., Carbon nanotube reinforced composites: potential and current challenges, Mater. Des., 28, 2394-2401 (2007)
[5] Estili, M.; Sakka, Y., Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites, Sci. Technol. Adv. Mater., 15, 1-25 (2014)
[6] Shen, H., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., 91, 9-19 (2009)
[7] Liew, K.; Lei, Z.; Zhang, L., Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review, Compos. Struct., 120, 90-97 (2015)
[8] Batra, R.; Jin, J., Natural frequencie SOF a functionally graded anisotropic rectangular plate, J. Sound Vib., 282, 509-516 (2015)
[9] Tornabene, F., Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution, Comput. Methods Appl. Mech. Eng., 198, 2911-2935 (2009) · Zbl 1229.74062
[10] Tornabene, F.; Viola, E., Free vibration analysis of functionally graded panels and shells of revolution, Meccanica, 44, 255-281 (2009) · Zbl 1254.74056
[11] Tornabene, F.; Viola, E., Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution, Eur. J. Mech. - A/Solids, 28, 991-1013 (2009) · Zbl 1176.74087
[12] Ebrahimi, M.; Najafizadeh, M., Free vibration analysis of two-dimensional functionally graded cylindrical shells, Appl. Math. Model., 38, 308-324 (2017) · Zbl 1449.74113
[13] Wali, M.; Hentati, T.; Jarraya, A.; Dammak, F., Free vibration analysis of FGM shell structures with a discrete double directors shell element, Compos. Struct., 125, 295-303 (2015)
[14] Bahadori, R.; Najafizadeh, M., Free vibration analysis of two-dimensional functionally graded axisymmetric cylindrical shell on winklerpasternak elastic foundation by first-order shear deformation theory and using Navier-differential quadrature solution methods, Appl. Math. Model., 39, 4877-4894 (2015) · Zbl 1443.74020
[15] Wang, Q.; Shi, D.; Liang, Q.; Pang, F., Free vibration of four-parameter functionally graded moderately thick doubly-curved panels and shells of revolution with general boundary conditions, Appl. Math. Model., 42, 705-734 (2017) · Zbl 1443.74122
[16] Zhu, P.; Lei, Z.; Liew, K., Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Compos. Struct., 94, 1450-1460 (2012)
[17] Lei, Z.; Zhang, L.; Liew, K., Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the KP-RITZ method, Compos. Struct., 127, 245-259 (2015)
[18] Zhang, L.; Lei, Z.; Liew, K., Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-RITZ method, Compos. Struct., 120, 189-199 (2015)
[19] Zhang, L.; Lei, Z.; Liew, K., Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates, Compos. Struct., 122, 172-183 (2015)
[20] Zhang, L.; Lei, Z.; Liew, K.; Yu, J., Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels, Compos. Struct., 111, 205-212 (2014)
[21] Aragh, B. S.; Barati, A. N.; Hedayati, H., Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels, Compos. Part B: Eng., 43, 1943-1954 (2012)
[22] Ansari, R., Vibrational analysis of carbon nanotube-reinforced composite quadrilateral plates subjected to thermal environments using a weak formulation of elasticity, Compos. Struct., 139, 167-187 (2016)
[23] Wang, Q.; Pang, F.; Qin, B.; Liang, Q., A unified formulation for free vibration of functionally graded carbon nanotube reinforced composite spherical panels and shells of revolution with general elastic restraints by means of the Rayleigh-Ritz method, Polym.Compos. (2017)
[24] Wang, Q.; Qin, B.; Shi, D.; Liang, Q., A semi-analytical method for vibration analysis of functionally graded carbon nanotube reinforced composite doubly-curved panels and shells of revolution, Compos. Struct., 174, 87-109 (2017)
[25] Fantuzzi, N.; Tornabene, F.; Bacciocchi, M.; Dimitri, R., Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates, Compos. Part B: Eng., 115, 348-408 (2017)
[26] Tornabene, F.; Fantuzzi, N.; Bacciocchi, M.; Viola, E., Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells, Compos. Part B: Eng., 89, 187-218 (2016)
[27] Malekzadeh, P.; Zarei, A., Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers, Thin walled Struct., 82, 221-232 (2014)
[28] Malekzadeh, P.; Heydarpour, Y., Mixed Navier-layerwise differential quadrature three dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates, Meccanica, 50, 143-167 (2015) · Zbl 1329.74113
[29] Heydarpour, Y.; Aghdam, M.; Malekzadeh, P., Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells, Compos. Struct., 117, 187-200 (2014) · Zbl 1383.74034
[30] Jooybar, N.; Malekzadeh, P.; Fiouz, A., Vibration of functionally graded carbon nanotubes reinforced composite truncated conical panels with elastically restrained against rotation edges in thermal environment, Compos. Part B: Eng., 106, 242-261 (2016)
[31] Jooybar, N.; Malekzadeh, P.; Fiouz, A.; Vaghefi, M., Thermal effect on free vibration of functionally graded truncated conical shell panels, Thin Walled Struct., 103, 45-61 (2016)
[32] Shojaee, M.; Setoodeh, A.; Malekzadeh, P., Vibration of functionally graded CNTS-reinforced skewed cylindrical panels using a transformed differential quadrature method, Acta Mech., 228, 2691-2711 (2017) · Zbl 1369.74046
[33] Shenas, A.; Malekzadeh, P.; Ziaee, S., Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment, Compos. Struct., 162, 325-340 (2017)
[34] Mehrabadi, S. J.; Sobhaniaragh, B.; Pourdonya, V., Free vibration analysis of nanocomposite plates reinforced by graded carbon nanotubes based on first-order shear deformation plate theory, Adv. Appl. Math. Mech., 5, 90-112 (2013) · Zbl 1262.74033
[35] Kiani, Y., Free vibration of carbon nanotube reinforced composite plate on point supports using lagrangian multipliers, Meccanica, 52, 1353-1367 (2017) · Zbl 1380.74047
[36] Kiani, Y., Free vibration of FG-CNT reinforced composite skew plates, Aerosp. Science Technol., 58, 178-188 (2016)
[37] Mirzaei, M.; Kiani, Y., Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels, Compos. Struct., 142, 45-56 (2016)
[38] Kiani, Y., Free vibration of FG-CNT reinforced composite spherical shell panels using gram-schmidt shape functions, Compos. Struct., 159, 368-381 (2016)
[39] Mirzaei, M.; Kiani, Y., Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout, Beilstein J. Nanotechnol., 7, 511-523 (2016)
[40] Kiani, Y., Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers, Comput. Math. Appl., 72, 2433-2449 (2016) · Zbl 1368.74035
[41] Alibeigloo, A.; Emtehani, A., Static and free vibration analyses of carbon nanotube-reinforced composite plate using differential quadrature method, Meccanica, 50, 61-76 (2015) · Zbl 1329.74107
[42] Garcia-Macias, E.; Castro-Triguero, R.; Flores, E.; Friswell, M.; Gallego, R., Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates, Compos. Struct., 140, 473-490 (2016)
[43] Lin, F.; Xiang, Y., Vibration analysis of carbon nanotube reinforced composite plates, Adv. Comput. Mech., 553, 681-686 (2014)
[44] Malekzadeh, P.; Dehbozorgi, M.; Monajjemzadeh, S., Vibration of functionally graded carbon nanotube-reinforced composite plates under a moving load, Sci. Eng. Compos. Mater., 22, 37-55 (2015)
[45] Ansari, R.; Torabi, J.; Shojaei, M., Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method, Eur. J. Mech. A/Solids, 60, 166-182 (2016) · Zbl 1406.74462
[46] Kiani, Y., Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method, Thin Walled Struct., 119, 47-57 (2017)
[47] Kiani, Y., Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load, Thin Walled Struct., 111, 48-57 (2017)
[48] Hajlaoui, A.; Jarraya, A.; Bikri, K. E.; Dammak, F., Buckling analysis of functionally graded materials structures with enhanced solid-shell elements and transverse shear correction., Compos. Struct., 132, 87-97 (2015)
[49] Natarajan, S.; Haboussi, M.; Ganapathi, M., Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets, Compos. Struct., 113, 197-207 (2012)
[50] Selim, B.; Zhang, L.; Liew, K., Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddys higher-order shear deformation theory, Eur. J. Mech. A/Solids, 156, 276-290 (2016)
[51] Mehar, K.; Panda, S.; Dehengia, A.; Kar, V. R., Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment, J. Sandw. Struct. Mater., 18, 151-173 (2014)
[52] Wattanasakulpong, N.; Chaikittiratana, A., Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation, Appl. Math. Model., 39, 5459-5472 (2015) · Zbl 1443.74125
[53] Yan, J.; Zhang, L.; Liew, K.; He, L., A higher-order gradient theory for modeling of the vibration behavior of single-wall carbon nanocones, Appl. Math. Model., 38, 2946-2960 (2014) · Zbl 06991505
[54] Wali, M.; Hajlaoui, A.; Dammak, F., Discrete double directors shell element for the functionally graded material shell structures analysis, Comput. Methods Appl. Mech. Eng., 278, 388-403 (2014) · Zbl 1423.74585
[55] Frikha, A.; Wali, M.; Hajlaoui, A.; Dammak, F., Dynamic response of functionally graded material shells with a discrete double directors shell element, Compos. Struct., 154, 385-395 (2016)
[56] Frikha, A.; Dammak, F., Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element, Comput. Methods Appl. Mech. Eng., 315, 1-24 (2017)
[57] Shen, H.; Xiang, Y., Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments, Comput. Methods Appl. Mech. Eng., 213-216, 196-205 (2012) · Zbl 1243.74059
[58] Shen, H., Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments, Compos. Struct., 111, 291-300 (2014)
[59] Shen, H., Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part i: axially-loaded shells, Compos. Struct., 93, 2096-2108 (2011)
[60] Shi, D.; Feng, X.; Huang, Y.; Hwang, K.; Gao, H., The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube reinforced composites, J. Eng. Mater. Technol., 126, 250-257 (2004)
[61] Fidelus, J.; Wiesel, E.; Gojny, F.; Schulte, K.; Wagner, H., Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites, Compos. Part A: Appl. Sci. Manuf., 36, 1555-1561 (2005)
[62] Han, Y.; Elliot, J., Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Comput. Mater. Sci., 39, 315-323 (2007)
[63] Zhang, C.; Shen, H., Temperature-dependent elastic properties of single-walled carbon nanotubes: prediction from molecular dynamics simulation, Appl. Phys. Lett., 89, 081904-1-3 (2006)
[64] Zghal, S.; Frikha, A.; Dammak, F., Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures, Compos. Struct., 176, 1107-1123 (2017)
[65] Dammak, F.; Abid, S.; Gakwaya, A.; Dhatt, G., A formulation of the non linear discrete kirchhoff quadrilateral shell element with finite rotations and enhanced strains, Rev. Eur. des Elem. Finis., 14, 7-31 (2005) · Zbl 1186.74104
[66] Bathe, K.; Dvorkin, E., A four-node plate bending element based on mindlin/reissner plate theory and a mixed interpolation, Int. J. Numer. Methods Eng., 21, 367-383 (1985) · Zbl 0551.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.