×

Mathematical modeling of macrosegregation during solidification of binary alloy by control volume finite element method. (English) Zbl 1480.80009

Summary: Unsteady coupled natural convective heat and mass transfer with liquid to solid phase change is described to analyze the macrosegregation of a Pb-Sn alloy in a rectangular two-dimensional cavity. The effect of cooling direction is investigated, by comparing the numerical simulation of solidification in rectangular molds with one vertical side cooled and with bottom wall cooling, both with the cold wall temperature changing with time. Fluid mechanics, heat and mass transfer coupled equations with unsteady, convective, diffusion and sources terms are solved with the Control Volume Finite Element Method (CVFEM) in cavities with aspect ratios \(A = H / B = 1 / 3, 0.6\) and 3. Results for the evolution of the distribution of streamlines, solidification front, isotherms and iso-concentrations are obtained with a code developed to characterize coupled fluid, heat and mass transport phenomena. Complex physical processes such as thermo-solutal convection during solidification, freckle formation and the final pattern of macrosegregation are described in terms of the cavity aspect ratio by the mathematical model. A good description of freckle formation and its relation to direction of cooling and aspect ratio has been obtained by the transient-convective-diffusive mathematical model solved by CVFEM.

MSC:

80A22 Stefan problems, phase changes, etc.
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
74N10 Displacive transformations in solids
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mazumder, P.; Trivedi, R., Integrated simulation of thermo-solutal convection and pattern formation in directional solidification, Appl. Math. Model., 28, 109-125 (2004) · Zbl 1302.76132
[2] Stefanescu, D. M., Science and Engineering of Casting Solidification (2010), Springer, Columbus
[3] Beckermann, C., Modeling of macrosegregation: applications and future needs, Int. Mater. Rev., 47, 243-261 (2002)
[4] Quillet, G.; Ciobanas, A.; Lehmann, P.; Frautelle, Y., A benchmark solidification experiment on an Sn-10 · Zbl 1105.80302
[5] Voller, V. R.; Vusanovic, I., Frequency analysis of macrosegregation measurements and simulations, Int. J. Heat Mass Transf., 79, 468-471 (2014)
[6] Hachani, L.; Zaidat, K.; Fautrelle, Y., Experimental study of the solidification of Sn-10wt.
[7] Voller, V. R.; Brent, A. D.; Prakash, C., Modelling the mushy region in a binary alloy, Appl. Math. Model., 14, 320-326 (1990)
[8] Mat, M. D.; Hegbsusi, O. J., Application of a hybrid model of mushy zone to macrosegregation in alloy solidification, Int. J. Heat Mass Transf., 45, 279-289 (2002) · Zbl 0988.76522
[9] Chakraborty, S.; Chakraborty, N.; Kumar, P.; Dutta, P., Three-dimensional double-diffusive convection and macrosegregation during non-equilibrium solidification of binary mixtures, Int. J. Heat Mass Transf., 46, 2115-2134 (2003) · Zbl 1032.76681
[10] Pardeshi, R.; Voller, V. R.; Singh, A. K.; Dutta, P., An explicit-implicit time stepping scheme for solidification models, Int. J. Heat Mass Transf., 51, 3399-3409 (2008) · Zbl 1148.80366
[11] Krane, M. J.M., Macrosegregation development during solidification of a multicomponent alloy with free-floating solid particles, Appl. Math. Model., 28, 95-107 (2004)
[12] Ahmadein, M.; Wu, M.; Ludwing, A., Analysis of macrosegregation formation and columnar-to equiaxed transition during solidification of Al-4wt.
[13] Li, J.; Wu, M.; Ludwing, A.; Kharicha, A., Simulation of macrosegregation in a 2.5-to steel ingot a three-phase mixed columnar-equiaxed model, Int. J. Heat Mass Transf., 72, 668-679 (2014)
[14] Rady, M.; Arquis, E., A dual-scale coupled micro/macro segregation model for dendritic alloy solidification, Heat Mass Transf., 42, 1129-1141 (2006)
[15] Voller, V. R.; Mouchmov, A.; Cross, M., An explicit scheme for coupling temperature and concentration fields in solidification models, Appl. Math. Model., 28, 79-94 (2004) · Zbl 1302.74170
[16] Baliga, B. R., Control-volume finite element methods for fluid flow and heat transfer, (Minkowycz, W. J.; Sparrow, E. M., Advances in Numerical Heat Transfer, vol. 1 (1997), Taylor & Francis: Taylor & Francis New York), 97-135
[17] Baliga, B. R.; Atabaki, N., Control-volume-based finite-difference and finite-element methods, (Minkowycz, W. J.; Sparrow, E. M.; Murthy, J. Y., Handbook of Numerical Heat Transfer (2006), Wiley), 191-224
[18] Costa, V. A.F.; Oliveira, L. A.; Figueiredo, A. R., A control volume based finite element method for three-dimensional incompressible turbulent fluid flow, heat transfer and related phenomena, Int. J. Numer. Methods Fluids, 21, 591-613 (1995) · Zbl 0847.76031
[19] Tombarević, E.; Voller, V. R.; Vušanović, I., Detailed CVFEM algorithm for three dimensional advection-diffusion problems, Comput. Model. Eng. Sci., 96, 1-29 (2013) · Zbl 1357.65144
[20] Du, Q.; Eskin, D. G.; Katgerman, L., Modeling macrosegregation during direct-chill casting of multicomponent aluminum alloys, Metall. Mater. Trans. A, 38A, 180-189 (2007)
[21] Hainke, M. H.E., Computation of Convection and Alloy Solidification with the Software Package CrysVUn (2004), Universität Erlangen-Nürnberg, Ph.d. thesis
[22] CrysVUn: User Manual and Tutorial Copyright © 2003-2004 crystal growth laboratory, Fraunhofer IISB. All rights reserved. available electronically, <https://download.iisb.fraunhofer.de/downloads/Manual-3.2.pdf; CrysVUn: User Manual and Tutorial Copyright © 2003-2004 crystal growth laboratory, Fraunhofer IISB. All rights reserved. available electronically, <https://download.iisb.fraunhofer.de/downloads/Manual-3.2.pdf
[23] Wintruff, I.; Günther, C.; Class, A. G., An interface-tracking control-volume finite-element method for melting and solidification problems: I. Formulation, Numer. Heat Transf. B, 39, 101-125 (2001)
[24] Wintruff, I.; Günther, C.; Class, A. G., An interface-tracking control-volume finite-element method for melting and solidification problems: II. Verification and application, Numer. Heat Transf. B, 39, 127-149 (2001)
[25] Ahmad, N., Numerical Simulation of Transport Processes in Multicomponent Systems Related to Solidification Problems (1995), École Polytechnique Fédérale de Lausanne, Ph.d. thesis
[26] Prakash, C.; Voller, V., On the numerical solution of continuum mixture model equations describing binary solid-liquid phase change, Numer. Heat Transf. B, 15, 171-189 (1989) · Zbl 0693.76094
[27] Kämpfer, T. U., Modeling of Macrosegregation Using an Adaptive Domain Decomposition Method (2002), École Polytechnique Fédérale de Lausanne, Ph.d. thesis
[28] Ahmad, N.; Combeau, H.; Desbiolles, J.-L.; Jalanti, T.; Lesoult, G.; Rappaz, J.; Rappaz, M.; Stomp, C., Numerical simulation of macrosegregation: a comparison between finite volume method and finite element method predictions and a confrontation with experiments, Metall. Mater. Trans. A, 29A, 617-630 (1998)
[29] De Vahl Davis, G., Natural convection of air in a square cavity a bench mark numerical solution, In. J. Numer. Methods Fluids, 3, 249-264 (1983) · Zbl 0538.76075
[30] Hebditch, D. J.; Hunt, J. D., Observations of ingot macrosegregation on model systems, Metall. Trans., 5, 1557-1564 (1974)
[31] Combeau, H.; Bellet, M.; Fautrelle, Y.; Gobin, D.; Arquis, E.; Budenkova, O.; Dussoubs, B.; Terrail, Y. D.; Kumar, A.; Gandin, C.-A.; Goyeau, B.; Mosbah, S.; Quatravaux, T.; Rady, M.; Založnik, M., Analysis of a numerical benchmark for columnar solidification of binary alloys, IOP Conf. Ser. Mater. Sci. Eng., 33, 012086 (2012)
[32] Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R., Simulation of freckles during vertical solidification of binary alloys, Metall. Trans. B, 22B, 847-859 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.