×

A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation. (English) Zbl 1484.42032

Summary: In this study, an efficient semi-discrete method based on the two-dimensional Legendre wavelets (2D LWs) is developed to provide approximate solutions for nonlinear variable-order time fractional two-dimensional (2D) Schrödinger equation. First, the variable-order time fractional derivative involved in the considered problem is approximated via the finite difference technique. Then, by help of the finite difference scheme and the theta-weighted method, a recursive algorithm is derived for the problem under examination. After that, the real functions available in the real and imaginary parts of the unknown solution of the problem are expanded via the 2D LWs. Finally, by applying the operational matrices of derivative, the solution of the problem is transformed to the solution of a linear system of algebraic equations in each time step which can simply be solved. In the proposed method, acceptable approximate solutions are achieved by employing only a small number of the basis functions. To illustrate the applicability, validity and accuracy of the wavelet method, some numerical test examples are solved using the suggested method. The achieved numerical results reveal that the method established based on the 2D LWs is very easy to implement, appropriate and accurate in solving the proposed model.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
26A33 Fractional derivatives and integrals
35J10 Schrödinger operator, Schrödinger equation
65T60 Numerical methods for wavelets

Software:

LLWM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. A. Abdelkawy; M. A. Zaky; A. H. Bhrawy; D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Romanian Reports in Physics, 67, 773-791 (2015)
[2] E. A.-B. Abdel-Salama, E. A. Yousif and M. A. El-Aasser, On the solution of the space-time fractional cubic nonlinear schrödinger equation, Physics, 2017.
[3] L. Acedo; S. B. Yuste; K. Lindenberg, Reaction front in an \(a+b\rightarrow c\) reaction-subdiffusion process, Phys. Rev. E, 69, 136-144 (2004)
[4] A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, 6 (1998), Article ID 38298, 7 pages.
[5] A. Atangana; J. F. Gómez-Aguilar, Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos, Solitons and Fractals, 114, 516-535 (2018) · Zbl 1415.34010
[6] A. Atangana; J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu, Numer. Methods Partial Differential Equations, 34, 1502-1523 (2018) · Zbl 1417.65113
[7] T. Bakkyaraj; R. Sahadevan, Approximate analytical solution of two coupled time fractional nonlinear schrödinger equations, Int. J. Appl. Comput. Math, 2, 113-135 (2016) · Zbl 1420.65083
[8] E. Barkai; R. Metzler; J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61, 132-138 (2000)
[9] D. A. Benson; S. W. Wheatcraft; M. M. Meerschaert, The fractional-order governing equation of lévy motion, Water Resources Research, 36, 1413-1423 (2000)
[10] A. H. Bhrawya; M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional schrödinger equations, J. Comput. Phys., 294, 462-483 (2015) · Zbl 1349.65503
[11] A. H. Bhrawy; M. A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynam., 85, 1815-1823 (2016) · Zbl 1349.65505
[12] A. H. Bhrawy; M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynam., 80, 101-116 (2015) · Zbl 1345.65060
[13] C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1998. · Zbl 0717.76004
[14] Y. Chen; L. Liu; B. Li; Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238, 329-341 (2014) · Zbl 1334.65167
[15] C. F. M. Coimbra, Mechanics with variable-order differential operators, Ann. Phys, 12, 692-703 (2003) · Zbl 1103.26301
[16] M. Dehghan; A. Shokri, A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions, Comput. Math. Appl., 54, 136-146 (2007) · Zbl 1126.65092
[17] E. H. Doha; A. H. Bhrawy; M. A. Abdelkawy; RobertA. Van Gorder, Jacobi-Gauss-Lobatto collocation method for the numerical solution of \(1+1\) nonlinear Schrödinger equations, J. Comput. Phys., 261, 244-255 (2014) · Zbl 1349.65511
[18] M. D. Feit; J. A. Fleck Jr.; A. Steiger, Solution of the Schrödinger equation by a spectral method, Computational Physics, 47, 412-433 (1982) · Zbl 0486.65053
[19] Z. Gao; S. Xie, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional schrödinger equations, Appl. Numer. Math., 61, 593-614 (2011) · Zbl 1221.65220
[20] J. F. Gómez-Aguilar; A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132, 1-13 (2017)
[21] J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Difference Equ., 2017 (2017), Paper No. 68, 18 pp. · Zbl 1422.35165
[22] S. H. M. Hamed, E. A. Yousif and A. I. Arbab, Analytic and approximate solutions of the space-time fractional Schrödinger equations by homotopy perturbation sumudu transform method, Abstr. Appl. Anal., 2014 (2014), Art. ID 863015, 13pp. · Zbl 1474.35650
[23] A. Hasegawa, Optical Solitons in Fibers, Berlin: Springer-Verlag, 1993.
[24] M. A. E. Herzallah; K. A. Gepreel, Approximate solution to the time-space fractional cubic nonlinear Schrödinger equation, Appl. Math. Model., 36, 5678-5685 (2012) · Zbl 1254.65115
[25] M. H. Heydari, Wavelets Galerkin method for the fractional subdiffusion equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061014, 7pp.
[26] M. H. Heydari, A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems, J. Franklin Inst., 355, 4970-4995 (2018) · Zbl 1395.49025
[27] M. H. Heydari; Z. Avazzadeh, Legendre wavelets optimization method for variable-order fractional Poisson equation, Chaos, Solitons and Fractals, 112, 180-190 (2018) · Zbl 1398.65316
[28] M. H. Heydari; Z. Avazzadeh, An operational matrix method for solving variable-order fractional biharmonic equation, Comput. Appl. Math., 37, 4397-4411 (2018) · Zbl 1402.65125
[29] M. H. Heydari; Z. Avazzadeh, A new wavelet method for variable-order fractional optimal control problems, Asian J. Control, 20, 1804-1817 (2018) · Zbl 1407.93127
[30] M. H. Heydari; Z. Avazzadeh; M. Farzi Haromi, A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation, Appl. Math. Comput., 341, 215-228 (2019) · Zbl 1429.65239
[31] M. H. Heydari; M. R. Hooshmandasl; C. Cattani; G. Hariharan, An optimization wavelet method for multi variable-order fractional differential equations, Fund. Inform., 151, 255-273 (2017) · Zbl 1379.65046
[32] M. H. Heydari; M. R. Hooshmandasl; F. M. Maalek Ghaini; C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A, 379, 71-76 (2015) · Zbl 1304.35748
[33] M. H. Heydari; M. R. Hooshmandasl; F. M. Maalek Ghaini; C. Cattani, Wavelets method for solving fractional optimal control problems, Appl. Math. Comput., 286, 139-154 (2016) · Zbl 1410.49032
[34] M. H. Heydari; M. R. Hooshmandasl; F. M. Maalek Ghaini; F. Feriedouni, Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem., 37, 1331-1338 (2013) · Zbl 1287.65113
[35] M. H. Heydari; M. R. Hooshmandasl; F. Mohammadi, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput., 234, 267-276 (2014) · Zbl 1298.65181
[36] M. H. Heydari; M. R. Hooshmandasl; F. Mohammadi, Two-dimensional Legendre wavelets for solving time-fractional telegraph equation, Adv. Appl. Math. Mech., 6, 247-260 (2014) · Zbl 1308.65172
[37] M. Hosseininia; M. H. Heydari; R. Roohi; Z. Avazzadeh, A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation, J. Comput. Phys., 395, 1-18 (2019) · Zbl 1452.65196
[38] M. Hosseininia; M. H. Heydari; Z. Avazzadeh; F. M. Maalek Ghaini, Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients, Int. J. Nonlinear Sci. Numer. Simul., 19, 793-802 (2018) · Zbl 1461.65247
[39] M. Hosseininia; M. H. Heydari; F. M. Maalek Ghaini; Z. Avazzadeh, A wavelet method to solve nonlinear variable-order time fractional 2D Klein-Gordon equation, Comput. Math. Appl., 78, 3713-3730 (2019) · Zbl 1443.65449
[40] J. Hu; J. Xin; H. Lu, The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62, 1510-1521 (2011) · Zbl 1228.35264
[41] M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Electromagnetic Waves Series, 45. Institution of Electrical Engineers (IEE), London, 2000. · Zbl 0943.78001
[42] X. Li; B. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43, 108-113 (2015) · Zbl 1315.65060
[43] J. Lin; Y. Hong; L.-H. Kuo; C.-S. Liu, Numerical simulation of 3D nonlinear Schrödinger equations by using the localized method of approximate particular solutions, Eng. Anal. Bound. Elem., 78, 20-25 (2017) · Zbl 1403.65095
[44] R. Lin; F. Liu; V. Anh; I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212, 435-445 (2009) · Zbl 1171.65101
[45] F. Liu; V. Anh; I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166, 209-219 (2004) · Zbl 1036.82019
[46] R. Metzler; J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278, 107-125 (2000)
[47] B. P. Moghaddam; J. A. T. Machado; H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Solitons Fractals, 102, 354-360 (2017) · Zbl 1422.65131
[48] A. Mohebbi; M. Dehghan, The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J. Comput. Appl. Math., 225, 124-134 (2009) · Zbl 1159.65081
[49] B. Parsa Moghaddam; J. A. T. Machado, Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput., 71, 1351-1374 (2017) · Zbl 1370.26017
[50] L. E. S. Ramirez; C. F. M. Coimbra, On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Phys. D, 240, 1111-1118 (2011) · Zbl 1219.76054
[51] K. M. Saad, M. M. Khader, J. F. Gómez-Aguilar and D. Baleanu, Numerical solutions of the fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos, 29 (2019), 023116, 9pp. · Zbl 1409.35225
[52] A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications., Chaos, 7 (1997), 753. · Zbl 0933.37029
[53] S. G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21, 213-236 (1995) · Zbl 0838.26006
[54] S. Samko, Fractional integration and differentiation of variable order: An overview, Nonlinear Dynam., 71, 653-662 (2013) · Zbl 1268.34025
[55] S. G. Samko; B. Ross, Integration and differentiation to a variable fractional order, Integral Transform Spec. Funct., 1, 277-300 (1993) · Zbl 0820.26003
[56] E. Scalas; R. Gorenflo; F. Mainardi, Fractional calculus and continuous-time finance, Phys. A, 284, 376-384 (2000)
[57] S. Shen; F. Liu; J. Chen; I. Turner; V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218, 10861-10870 (2012) · Zbl 1280.65089
[58] E. Shivanian; A. Jafarabadi, An efficient numerical technique for solution of two-dimensional cubic nonlinear Schrödinger equation with error analysis, Eng. Anal. Bound. Elem., 83, 74-86 (2017) · Zbl 1403.65099
[59] J.-J. Shyu; S.-C. Pei; C.-H. Chan, An iterative method for the design of variable fractional-order FIR differintegrators, Signal Process., 89, 320-327 (2009) · Zbl 1151.94410
[60] H. G. Sun, W. Chen, H. Wei and Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), Article number: 185.
[61] F. D. Tappert, The parabolic approximation method, Wave Propagation and Underwater Acoustics (Workshop, Mystic, Conn., 1974), Lecture Notes in Physics, Springer, Berlin, 70 (1977), 224-287.
[62] A. Tayebi; Y. Shekari; M. H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340, 655-669 (2017) · Zbl 1380.65185
[63] S. Yaghoobi; B. P. Moghaddam; K. Ivaz, An efficient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear Dynam., 87, 815-826 (2017) · Zbl 1372.34125
[64] H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Math. Model. Nat. Phenom., 13 (2018), 17pp. · Zbl 1462.34022
[65] F. Yin; J. Song; F. Lu, A coupled method of Laplace transform and Legendre wavelets for nonlinear Klein-Gordon equations, Math. Methods Appl. Sci., 37, 781-792 (2014) · Zbl 1291.65396
[66] S. B. Yuste and K. Lindenberg, Subdiffusion-limited A + A reactions, Phys. Rev. Lett, 87 (2001), 118301.
[67] M. Zayernouri; G. E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293, 312-338 (2015) · Zbl 1349.65531
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.