×

Existence and multiplicity of solutions for fractional Schödinger equation involving a critical nonlinearity. (English) Zbl 1487.35427

MSC:

35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
35D30 Weak solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jajarmi, A.; Arshad, S.; Baleanu, D., A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, Stat. Mech. Appl., 535 (2019) · Zbl 07571256 · doi:10.1016/j.physa.2019.122524
[2] Baleanu, D.; Jajarmi, A.; Sajjadi, S. S.; etal., A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, Interdiscip. J. Nonlinear Sci., 29 (2019) · Zbl 1420.92039 · doi:10.1063/1.5096159
[3] Jajarmi, A.; Ghanbari, B.; Baleanu, D., A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos, Interdiscip. J. Nonlinear Sci., 29 (2019) · Zbl 1423.92093 · doi:10.1063/1.5112177
[4] Baleanu, D.; Sajjadi, S. S.; Jajarmi, A.; etal., New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator, Eur. Phys. J. Plus, 134 (2019) · doi:10.1140/epjp/i2019-12561-x
[5] Baleanu, D.; Jajarmi, A.; Asad, J. H., Classical and fractional aspects of two coupled pendulums, Rom. Rep. Phys., 71 (2019)
[6] Veeresha, P.; Prakasha, D. G.; Qurashi, M. A.; etal., A reliable technique for fractional modified Boussinesq and approximate long wave equations, Adv. Differ. Equ., 2019 (2019) · Zbl 1459.35385 · doi:10.1186/s13662-019-2185-2
[7] Tassaddiq, A.; Khan, I.; Nisar, K. S., Heat transfer analysis in sodium alginate based nanofluid using MoS2 nanoparticles: Atangana-Baleanu fractional model, Chaos Solitons Fractals, 130 (2020) · Zbl 1489.80003 · doi:10.1016/j.chaos.2019.109445
[8] Khan, O.; Khan, N.; Baleanu, D.; etal., Computable solution of fractional kinetic equations using Mathieu-type series, Adv. Differ. Equ., 2019 (2019) · Zbl 1459.35379 · doi:10.1186/s13662-019-2167-4
[9] Nisar, K. S.; Mondal, S. R.; Belgacem, F. B.M., On fractional kinetic equations k-Struve functions based solutions, Alex. Eng. J., 57, 3249-3254 (2018) · doi:10.1016/j.aej.2018.01.010
[10] Shaikh, A. S.; Nisar, K. S., Transmission dynamics of fractional order typhoid fever model using Caputo-Fabrizio operator, Chaos Solitons Fractals, 128, 355-365 (2019) · Zbl 1483.34017 · doi:10.1016/j.chaos.2019.08.012
[11] Shaikh, A.; Tassaddiq, A.; Nisar, K. S.; etal., Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction diffusion equations, Adv. Differ. Equ., 2019 (2019) · Zbl 1459.35383 · doi:10.1186/s13662-019-2115-3
[12] Nisar, K. S.; Gharsseldien, Z. M.; Belgacem, F. B.M., Solution of fractional distributed order reaction-diffusion systems with Sumudu transform, Nonlinear Stud., 24, 911-920 (2017) · Zbl 1390.44006
[13] Laskin, N., Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[14] Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhike’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[15] Cheng, M., Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012) · Zbl 1275.81030 · doi:10.1063/1.3701574
[16] Xiang, M.; Zhang, B.; Zhang, X., A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in RN \(\mathbb{R}^N \), Adv. Nonlinear Stud., 17, 611-640 (2017) · Zbl 1372.35348 · doi:10.1515/ans-2016-6002
[17] Zhang, W.; Tang, X.; Zhang, J., Infinitely many radial and non-radial solutions for a fractional Schrödinger equation, Comput. Math. Appl., 71, 737-747 (2016) · Zbl 1359.35219 · doi:10.1016/j.camwa.2015.12.036
[18] Shang, X.; Zhang, J., Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27, 187-207 (2014) · Zbl 1287.35027 · doi:10.1088/0951-7715/27/2/187
[19] Zhang, X.; Zhang, B.; Repovš, D., Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal., 142, 48-68 (2016) · Zbl 1338.35013 · doi:10.1016/j.na.2016.04.012
[20] Tao, F.; Wu, X., Exitence and multiplity of positive solution for fractional Schrödinger equations with critical growth, Nonlinear Anal., Real World Appl., 35, 158-174 (2017) · Zbl 1372.35346 · doi:10.1016/j.nonrwa.2016.10.007
[21] He, X.; Zou, W., Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var., 55 (2016) · Zbl 1395.35193 · doi:10.1007/s00526-016-1045-0
[22] Yun, Y.; An, T.; Zuo, J.; Zhao, D., Infinitely many solutions for fractional Schrödinger equation with potential vanishing at infinity, Bound. Value Probl., 2019 (2019) · Zbl 1513.35269 · doi:10.1186/s13661-019-1175-3
[23] Palatucci, G.; Pisante, A., Improved Sobolev embeddings, profile decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., 50, 799-829 (2014) · Zbl 1296.35064 · doi:10.1007/s00526-013-0656-y
[24] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 324-353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[25] Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996) · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
[26] Rabinowitz, P. H., On a class of nonlinear Schrödinger equation, Z. Angew. Math. Phys., 43, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[27] Bisci, G.M., Radulescu, D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Cambridge University Press, Cambridge (2016) · Zbl 1356.49003 · doi:10.1017/CBO9781316282397
[28] Torres, C.: Non-homogeneous fractional Schrödinger equation. arXiv:1311.0708 · Zbl 1499.35688
[29] Bogachev, V.I.: Measure Theory, Vol.II. Springer, Berlin (2007) · Zbl 1120.28001 · doi:10.1007/978-3-540-34514-5
[30] Hajipour, M.; Jajarmi, A.; Baleanu, D., On the accurate discretization of a highly nonlinear boundary value problem, Numer. Algorithms, 79, 679-695 (2018) · Zbl 1405.65143 · doi:10.1007/s11075-017-0455-1
[31] Hajipour, M.; Jajarmi, A.; Malek, A.; etal., Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation, Appl. Math. Comput., 325, 146-158 (2018) · Zbl 1429.65183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.