×

A new class of analytical solutions describing anisotropic neutron stars in general relativity. (English) Zbl 1490.83014

Summary: A new class of solutions describing analytical solutions for compact stellar structures has been developed within the tenets of General Relativity. Considering the inherent anisotropy in compact stars, a stable and causal model for realistic anisotropic neutron stars was obtained using the general theory of relativity. Assuming a physically acceptable nonsingular form of one metric potential and radial pressure containing the curvature parameter \(R\), the constant \(k\) and the radius \(r\), analytical solutions to Einstein’s field equations for anisotropic matter distribution were obtained. Taking the value of \(k\) as \(-0.44\), it was found that the proposed model obeys all necessary physical conditions, and it is potentially stable and realistic. The model also exhibits a linear equation of state, which can be applied to describe compact stars.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
85A15 Galactic and stellar structure
74E10 Anisotropy in solid mechanics
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35B08 Entire solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Potekhin, A. Y., Phys.-Usp.53 (2010) 1235.
[2] Shapiro, S. L. and Teukolsky, S. A., Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, 1983).
[3] Ruderman, M., Ann. Rev. Astron. Astrophys.10 (1972) 427, https://doi.org/10.1146/annurev.aa.10.090172.002235.
[4] Canuto, V., Ann. Rev. Astron. Astrophys.12 (1974) 167.
[5] Bowers, R. L. and Liang, E., Astrophys. J.188 (1974) 657.
[6] Sokolov, A., Sov. Phys. JETP52 (1980) 575.
[7] Sawyer, R. F., Phys. Rev. Lett.29 (1972) 382.
[8] Chan, R., Herrera, L. and Santos, N., Mon. Not. Roy. Astron. Soc.265 (1993) 533.
[9] Herrera, L. and Santos, N. O., Phys. Rep.286 (1997) 53.
[10] Maharaj, S. and Maartens, R., Gen. Relativ. Gravit.21 (1989) 899.
[11] Heintzmann, H. and Hillebrandt, W., Astron. Astrophys.38 (1975) 51.
[12] Bhar, P., Eur. Phys. J. C79 (2019) 138.
[13] Chaisi, M. and Maharaj, S., Gen. Relativ. Gravit.37 (2005) 1177. · Zbl 1075.83024
[14] Karmakar, S., Mukherjee, S., Sharma, R. and Maharaj, S. D., Pramana68 (2007) 881, arXiv:0708.3305[gr-qc].
[15] Maharaj, S. D. and Maartens, R., Gen. Relativ. Gravit.21 (1989) 899.
[16] Mak, M. K. and Harko, T., Proc. Roy. Soc. London Ser. A459 (2003) 393, arXiv:gr-qc/0110103[gr-qc].
[17] Murad, M. H., Astrophys. Space Sci.361 (2016) 20.
[18] Azam, M., Mardan, S. and Rehman, M., Chin. Phys. Lett.33 (2016) 070401.
[19] Alcock, C., Farhi, E. and Olinto, A., Astrophys. J.310 (1986) 261.
[20] Haensel, P., Zdunik, J. and Schaefer, R., Astron. Astrophys.160 (1986) 121.
[21] Baskey, L., Das, S. and Rahaman, F., Mod. Phys. Lett. A36 (2021) 2150028. · Zbl 1456.85002
[22] Singh, K. N., Maurya, S., Bhar, P. and Rahaman, F., Phys. Scr.95 (2020) 115301.
[23] Ivanov, B., Int. J. Mod. Phys. A25 (2010) 3975. · Zbl 1194.83055
[24] Esculpi, M., Malaver, M. and Aloma, E., Gen. Relativ. Gravit.39 (2007) 633. · Zbl 1137.83009
[25] Harko, T. and Mak, M., J. Math. Phys.41 (2000) 4752. · Zbl 0977.83077
[26] Gleiser, M. and Dev, K., Int. J. Mod. Phys. D13 (2004) 1389. · Zbl 1064.85003
[27] Pandya, D., Thakore, B., Goti, R., Rank, J. and Shah, S., Astrophys. Space Sci.365 (2020) 1.
[28] Karmakar, S., Mukherjee, S., Sharma, R. and Maharaj, S., Pramana68 (2007) 881.
[29] Khadekar, G. and Tade, S., Astrophys. Space Sci.310 (2007) 41.
[30] Patel, L. and Mehta, N., Austral. J. Phys.48 (1995) 635.
[31] Herrera, L., Phys. Rev. D101 (2020) 104024.
[32] Zubair, M. and Abbas, G., Astrophys. Space Sci.361 (2016) 1.
[33] Shamir, M. F. and Malik, A., Chin. J. Phys.69 (2021) 312.
[34] Bhar, P., Euro. Phys. J. Plus135 (2020) 1.
[35] Deb, D., Rahaman, F., Ray, S. and Guha, B., J. Cosmol. Astropart. Phys.2018 (2018) 044. · Zbl 07458489
[36] Olmo, G. J., Rubiera-Garcia, D. and Wojnar, A., Phys. Rep.876 (2020) 1, arXiv:1912.05202[gr-qc].
[37] Sharma, R. and Ratanpal, B., Int. J. Mod. Phys. D22 (2013) 1350074. · Zbl 1278.83016
[38] Tikekar, R., J. Math. Phys.31 (1990) 2454, https://doi.org/10.1063/1.528851. · Zbl 0726.70011
[39] Maharaj, S. D. and Leach, P. G. L., J. Math. Phys.37 (1996) 430, https://doi.org/10.1063/1.531399. · Zbl 0873.34004
[40] Gendre, B., Barret, D. and Webb, N., Astron. Astrophys.403 (2003) L11.
[41] Gendre, B., Barret, D. and Webb, N. A., Astron. Astrophys.400 (2003) 521.
[42] Heinke, C. O., Rybicki, G. B., Narayan, R. and Grindlay, J. E., Astrophys. J.644 (2006) 1090.
[43] M. C. Weisskopf, W. Becker, D. A. Swartz, G. G. Pavlov, R. F. Elsner, J. Grindlay, R. Mignani, A. F. Tennant, D. Backer, L. Pulone and V. Testa, Nucl. Phys. B — Proc. Suppl.132 (2004) 566, Proc. 2nd BeppoSAX Conf.: The Restless High-Energy Universe (Elsevier, 2004).
[44] Zdunik, J. and Haensel, P., Astron. Astrophys.551 (2013) A61.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.