×

Boundary value problems for local and nonlocal Liouville type equations with several exponential type nonlinearities: radial and nonradial solutions. (English) Zbl 1494.35081

MSC:

35J25 Boundary value problems for second-order elliptic equations
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35C05 Solutions to PDEs in closed form
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, V., Ordinary Differential Equations (1992), Berlin: Springer, Berlin · Zbl 0744.34001
[2] Bartolucci, D.; Leoni, F.; Orsina, L.; Ponce, A., Semilinear equations with exponential nonlinearity and measure data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 22, 6, 799-815 (2005) · Zbl 1148.35318 · doi:10.1016/j.anihpc.2004.12.003
[3] Bartolucci, D.; Lin, C., Existence and uniqueness for mean field equations on multiply connected domains at the critical parameter, Math. Ann., 359, 1-2, 1-44 (2014) · Zbl 1300.35058 · doi:10.1007/s00208-013-0990-6
[4] Brezis, H.; Merle, F., Uniform estimates and blow-up behaviour for solutions of \(- \Delta v = v(x) e^u\) in two dimensions, Commun. Partial Differ. Equ., 16, 8-9, 1223-1253 (1991) · Zbl 0746.35006 · doi:10.1080/03605309108820797
[5] Byrd, P.; Friedman, M., Handbook of Elliptic Integrals for Engineers and Scientists (1971), NY: Springer, NY · Zbl 0213.16602 · doi:10.1007/978-3-642-65138-0
[6] Chavanis, B., Statistical mechanics of the two dimensional vortices and stellar systems, dynamics and thermodynamics of systems with long range interactions, Les Houches, Lecture Notes in Phys., 208-289 (2002), Berlin: Springer, Berlin
[7] De Marchis, F.; Ricciardi, T., Existence of stationary turbulent flows with variable positive vortex intensity, Nonlinear Anal., Real World Appl., 38, 222-244 (2017) · Zbl 1379.35225 · doi:10.1016/j.nonrwa.2017.04.013
[8] Dwight, H., Tables of Integrals and Other Mathematical Data (1961), NY: Macmillan Co., NY · Zbl 0010.07205
[9] Eyink, G.; Sreenivasan, K., Onsager and the theory of hydrodynamic turbulnece, Rev. Mod. Phys., 78, 1, 87-135 (2006) · Zbl 1205.01032 · doi:10.1103/RevModPhys.78.87
[10] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68, 3, 209-243 (1979) · Zbl 0425.35020 · doi:10.1007/BF01221125
[11] Hoffman, K., Banach Spaces of Analytic Functions (1962), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0117.34001
[12] Jevnikar, A.; Yang, W., Analytic aspects of Tzitzeika equation: blow up analysis and existence results, Calc. Var. Partial Differ. Equ., 56, 2 (2017) · Zbl 1370.35128 · doi:10.1007/s00526-017-1136-6
[13] Malchiodi, A., Topological methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21, 1, 277-294 (2008) · Zbl 1144.35372 · doi:10.3934/dcds.2008.21.277
[14] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1092 (1970/71) · Zbl 0203.43701
[15] Onsager, L., Statistical hydrodynamics, Nuovo Cimento (9), 6, 279-287 (1949) · doi:10.1007/BF02780991
[16] Pistoia, A.; Ricciardi, R., Concentrating solutions for a Liouville type equation with variable intensities in 2-D turbulence, Nonlinearity, 29, 2, 271-297 (2016) · Zbl 1341.35056 · doi:10.1088/0951-7715/29/2/271
[17] Poliakovsky, A.; Tarantello, G., On a planar Liouville type problem in the study of selfgravitating strings, J. Differ. Equ., 252, 5, 1327-1348 (2012) · Zbl 1232.35167 · doi:10.1016/j.jde.2011.11.006
[18] Popivanov, P., Explicit formulas to the solutions of Dirichlet problem for equations arising in geometry and physics, C. R. Acad. Bulgare Sci., 68, 1, 19-24 (2015) · Zbl 1340.35044
[19] Popivanov, P.; Nikolov, N., On the Dirichlet problem to the Liouville equation. Explicit formulas, C. R. Acad. Bulgare Sci., 69, 11, 1389-1400 (2016) · Zbl 1374.35180
[20] Popivanov, P.; Slavova, A., Nonlinear Waves. An Introduction (2011), Singapore: World Scientific, Singapore · Zbl 1215.76001
[21] Popivanov, P.; Slavova, A., Full classification of the travelling wave solutions of Fornberg-Whitham equation. Solutions into explicit form, C. R. Acad. Bulgare Sci., 65, 5, 563-574 (2012) · Zbl 1265.35312
[22] Popivanov, P.; Slavova, A., Nonlinear Waves. A Geometrical Approach (2019), Singapore: World Scientific, Singapore · Zbl 1429.35005
[23] Popivanov, P.; Slavova, A.; Zecca, P., Regularizing property of the solutions of a dissipative semilinear wave equation, C. R. Acad. Bulgare Sci., 63, 7, 861-870 (2010) · Zbl 1224.35286
[24] Prajapat, J.; Tarantello, G., On a class of elliptic problems in \({\mathbf{R}}^2 \):symmetry and uniqueness results, Proc. R. Soc. Edinb., 131A, 967-985 (2001) · Zbl 1009.35018 · doi:10.1017/S0308210500001219
[25] Ricciardi, T.; Takahashi, R., On radial two-species Onsager vortices near the critical temperature, Indiana Univ. Math. J., 68, 6, 1903-1926 (2019) · Zbl 1440.35166 · doi:10.1512/iumj.2019.68.7765
[26] Suzuki, T., Global analysis for a 2-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 9, 4, 367-397 (1992) · Zbl 0785.35045 · doi:10.1016/S0294-1449(16)30232-3
[27] Suzuki, T., Mean Field Theories and Dual Variations: Mathematical Structures of the Mesoscopic Model (2015), Paris: Atlantis Press, Paris · Zbl 1372.35001
[28] Tribuzy De Azevedo, R.; Guadalupe, I., Minimal immersions of surfaces into 4-dimensional space form, Rend. Semin. Mat. Univ. Padova, 73, 1-13 (1985) · Zbl 0573.53036
[29] Yang, Y., Self-duality of the gauge filed equations and the cosmological constant, Commun. Math. Phys., 162, 3, 481-498 (1994) · Zbl 0809.53089 · doi:10.1007/BF02101744
[30] Zhou, C., Existence result for meanfield equation on the equilibrium turbulence in the super critical case, Commun. Contemp. Math., 13, 4, 659-673 (2011) · Zbl 1269.35010 · doi:10.1142/S0219199711004336
[31] Zygmund, A., Trigonometric Series. Vol. 1 and 2 (1959), London: Cambridge University Press, London · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.