×

zbMATH — the first resource for mathematics

Extension d’un théorème de Liouville. (French) JFM 52.0316.02
Verf. beweist den Satz: Ist \(\omega (\varphi )\) eine positive (endliche oder unendliche) Funktion, für die das Integral \[ \int _0^{2\pi } \omega (\varphi )\,d\varphi \] existiert, so ist jede ganze Funktion \(f(z)\) mit \[ |f(re^{i\varphi})|\leqq e^{e^{\omega (\varphi )}} \] notwendig eine Konstante.

MSC:
26A42 Integrals of Riemann, Stieltjes and Lebesgue type
PDF BibTeX Cite
Full Text: DOI
References:
[1] Cf.E. Lindelöf: Le calcul des résidus, p. 121.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.