×

CPsuperH2.3: an updated tool for phenomenology in the MSSM with explicit CP violation. (English) Zbl 1296.81008

Summary: We describe the Fortran code CPsuperH2.3, which incorporates the following updates compared with its predecessor CPsuperH2.0. It implements improved calculations of the Higgs-boson masses and mixing including stau contributions and finite threshold effects on the tau-lepton Yukawa coupling. It incorporates the LEP limits on the processes \(e^{+}e^{-}\to H_{i}Z,H_{i}H_{j}\) and the CMS limits on \(H_i\to \overline{\tau}\tau\) obtained from 4.6 fb\(^{-1}\) of data at a center-of-mass energy of 7 TeV. It also includes the decay mode \(H_{i}\to Z\gamma\) and the Schiff-moment contributions to the electric dipole moments of Mercury and Radium 225, with several calculational options for the case of Mercury. These additions make CPsuperH2.3 a suitable tool for analyzing possible CP-violating effects in the MSSM in the era of the LHC and a new generation of EDM experiments.

MSC:

81-04 Software, source code, etc. for problems pertaining to quantum theory
81-08 Computational methods for problems pertaining to quantum theory
81Q60 Supersymmetry and quantum mechanics
81V25 Other elementary particle theory in quantum theory
81R40 Symmetry breaking in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Lee, J. S.; Carena, M.; Ellis, J.; Pilaftsis, A.; Wagner, C. E.M., CPsuperH2.0: an improved computational tool for Higgs phenomenology in the MSSM with explicit CP violation, Comput. Phys. Comm., 180, 312 (2009), arXiv:0712.2360 [hep-ph]
[2] Lee, J. S.; Pilaftsis, A.; Carena, M. S.; Choi, S. Y.; Drees, M.; Ellis, J. R.; Wagner, C. E.M., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP violation, Comput. Phys. Comm., 156, 283 (2004)
[3] Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G., FeynHiggs: a program for the calculation of MSSM Higgs-boson observables — version 2.6.5, Comput. Phys. Comm., 180, 1426 (2009) · Zbl 1198.81015
[4] Chatrchyan, S., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, 716, 30 (2012), arXiv:1207.7235 [hep-ex]
[5] Choi, S. Y.; Drees, M.; Lee, J. S., Loop corrections to the neutral Higgs boson sector of the MSSM with explicit CP violation, Phys. Lett. B, 481, 57 (2000)
[6] Schael, S., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C, 47, 547 (2006)
[8] Ellis, J.; Lee, J. S.; Pilaftsis, A., Maximal electric dipole moments of nuclei with enhanced schiff moments, J. High Energy Phys., 1102, 045 (2011), arXiv:1101.3529 [hep-ph] · Zbl 1294.81381
[9] Skands, P. Z.; Allanach, B. C.; Baer, H.; Balazs, C.; Belanger, G.; Boudjema, F.; Djouadi, A.; Godbole, R., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators, J. High Energy Phys., 0407, 036 (2004)
[10] Allanach, B. C.; Balazs, C.; Belanger, G.; Bernhardt, M.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U., SUSY Les Houches accord 2, Comput. Phys. Comm., 180, 8 (2009), arXiv:0801.0045 [hep-ph]
[11] Carena, M. S.; Espinosa, J. R.; Quiros, M.; Wagner, C. E.M., Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B, 355, 209 (1995)
[12] Carena, M. S.; Quiros, M.; Wagner, C. E.M., Effective potential methods and the Higgs mass spectrum in the MSSM, Nuclear Phys. B, 461, 407 (1996)
[13] Carena, M.; Gori, S.; Shah, N. R.; Wagner, C. E.M., A 125 GeV SM-like Higgs in the MSSM and the \(\gamma \gamma\) rate, J. High Energy Phys., 1203, 014 (2012), arXiv:1112.3336 [hep-ph]
[14] Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E., HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the tevatron, Comput. Phys. Comm., 181, 138 (2010), arXiv:0811.4169 [hep-ph] · Zbl 1205.82001
[16] Harlander, R. V.; Kilgore, W. B., Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D, 68, 013001 (2003)
[17] Ciccolini, M.; Denner, A.; Dittmaier, S., Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D, 77, 013002 (2008), arXiv:0710.4749 [hep-ph]
[18] Ellis, J. R.; Lee, J. S.; Pilaftsis, A., CERN LHC signatures of resonant CP violation in a minimal supersymmetric Higgs sector, Phys. Rev. D, 70, 075010 (2004)
[19] Ellis, J. R.; Lee, J. S.; Pilaftsis, A., Electric dipole moments in the MSSM reloaded, J. High Energy Phys., 0810, 049 (2008), arXiv:0808.1819 [hep-ph]
[20] Carena, M.; Ellis, J. R.; Pilaftsis, A.; Wagner, C. E.M., Renormalization-group-improved effective potential for the MSSM Higgs sector with explicit CP violation, Nuclear Phys. B, 586, 92 (2000)
[21] Pilaftsis, A.; Wagner, C. E.M., Higgs bosons in the minimal supersymmetric standard model with explicit CP violation, Nuclear Phys. B, 553, 3 (1999)
[23] Djouadi, A.; Driesen, V.; Hollik, W.; Kraft, A., The Higgs photon - Z boson coupling revisited, Eur. Phys. J. C, 1, 163 (1998)
[24] Cheung, K.; Hou, T.-J.; Lee, J. S.; Senaha, E., Higgs mediated EDMs in the next-to-MSSM: an application to electroweak baryogenesis, Phys. Rev. D, 84, 015002 (2011), arXiv:1102.5679 [hep-ph]
[25] Carena, M.; Ellis, J. R.; Pilaftsis, A.; Wagner, C. E.M., Higgs-boson pole masses in the MSSM with explicit CP violation, Nuclear Phys. B, 625, 345 (2002)
[26] Ellis, J. R.; Lee, J. S.; Pilaftsis, A., B-meson observables in the maximally CP-violating MSSM with minimal flavour violation, Phys. Rev. D, 76, 115011 (2007), arXiv:0708.2079 [hep-ph]
[27] Cheung, K.; Kong, O. C.W.; Lee, J. S., Electric and anomalous magnetic dipole moments of the muon in the MSSM, J. High Energy Phys., 0906, 020 (2009), arXiv:0904.4352 [hep-ph]
[28] Ellis, J.; Lee, J. S.; Pilaftsis, A., A geometric approach to CP violation: applications to the MCPMFV SUSY model, J. High Energy Phys., 1010, 049 (2010), arXiv:1006.3087 [hep-ph] · Zbl 1291.81446
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.