×

Formal notes on the substitutional analysis of logical consequence. (English) Zbl 1506.03026

Summary: Logical consequence in first-order predicate logic is defined substitutionally in set theory augmented with a primitive satisfaction predicate: an argument is defined to be logically valid if and only if there is no substitution instance with true premises and a false conclusion. Substitution instances are permitted to contain parameters. Variants of this definition of logical consequence are given: logical validity can be defined with or without identity as a logical constant, and quantifiers can be relativized in substitution instances or not. It is shown that the resulting notions of logical consequence are extensionally equivalent to versions of first-order provability and model-theoretic consequence. Every model-theoretic interpretation has a substitutional counterpart, but not vice versa. In particular, in contrast to the model-theoretic account, there is a trivial intended interpretation on the substitutional account, namely, the homophonic interpretation that does not substitute anything. Applications to free logic, and theories and languages other than set theory are sketched.

MSC:

03A05 Philosophical and critical aspects of logic and foundations
03B10 Classical first-order logic
PDFBibTeX XMLCite
Full Text: DOI Euclid Link

References:

[1] Beall, J. C., and G. Restall, G., Logical Pluralism, Oxford University Press, Oxford, 2006. · Zbl 1374.03001
[2] Behmann, H., “Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem,” Mathematische Annalen, vol. 86 (1922), pp. 163-229. · JFM 48.1119.02 · doi:10.1007/BF01457985
[3] Berka, K., and L. Kreiser, eds., Logik-Texte: Kommentierte Auswahl zur Geschichte der modernen Logik, 4th revised edition, Akademie-Verlag, Berlin, 1986.
[4] Dean, W., “Incompleteness via paradox and completeness,” Review of Symbolic Logic, published electronically May 23, 2019.
[5] Etchemendy, J., The Concept of Logical Consequence, Harvard University Press, Cambridge, MA, 1990. · Zbl 0743.03002
[6] Fujimoto, K., and V. Halbach, “Classical determinate truth,” in preparation. · Zbl 1429.03190
[7] Grossi, M., “A substitutional semantics for modal logic,” in preparation.
[8] Halbach, V., Axiomatic Theories of Truth, Cambridge University Press, Cambridge, 2011. · Zbl 1223.03001
[9] Halbach, V., “The substitutional analysis of logical consequence,” Noûs, published electronically June 8, 2018.
[10] Halbach, V., and L. Horsten, “Axiomatizing Kripke’s theory of truth,” Journal of Symbolic Logic, vol. 71 (2006), pp. 677-712. · Zbl 1101.03005 · doi:10.2178/jsl/1146620166
[11] Hilbert, D., and P. Bernays, Grundlagen der Mathematik II, 2nd edition, vol. 50 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 1970. · Zbl 0211.00901
[12] Hinman, P. G., J. Kim, and S. P. Stich, “Logical truth revisited,” Journal of Philosophy, vol. 65 (1968), pp. 495-500.
[13] Hubien, H., ed., Iohannis Buridani Tractatus de Consequentiis, vol. XVI of Philosophes Médiévaux, Publications Universitaires, Louvain, 1976.
[14] Jeffrey, R. C., Formal Logic: Its Scope and Limits, 3rd edition, McGraw-Hill, New York, 1991. · Zbl 0925.03002
[15] Kleene, S. C., Introduction to Metamathematics, Van Nostrand, New York, 1952. · Zbl 0047.00703
[16] Koreň, L., “Quantificational accounts of logical consequence, I: From Aristotle to Bolzano,” Organon F, vol. 21 (2014), pp. 22-44.
[17] Kreisel, G., “Mathematical logic,” pp. 95-195 in Lectures on Modern Mathematics, Vol. III, edited by T. L. Saaty, Wiley, New York, 1965. · Zbl 0147.24703
[18] Kreisel, G., “Informal rigour and completeness proofs,” pp. 138-86 in The Philosophy of Mathematics, edited by I. Lakatos, vol. 47 of Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam, 1967. · Zbl 0155.33801
[19] Kreisel, G., Mathematical logic: What has it done for the philosophy of mathematics? pp. 201-72 in Bertrand Russell: Philosopher of the Century, edited by R. Schoenman, George Allen and Unwin, London, 1967.
[20] McGee, V., “Maximal consistent sets of instances of Tarski’s schema (T),” Journal of Philosophical Logic, vol. 21 (1992), pp. 235-41. · Zbl 0773.03003 · doi:10.1007/BF00260929
[21] McKeon, M., “On the substitutional characterization of first-order logical truth,” History and Philosophy of Logic, vol. 25 (2004), pp. 205-24. · Zbl 1062.03013 · doi:10.1080/01445340310001642093
[22] Quine, W. V., Philosophy of Logic, 2nd edition, Harvard University Press, Cambridge, MA, 1986.
[23] Rayo, A., “Beyond plurals,” pp. 220-54 in Absolute Generality, edited by A. Rayo and G. Uzquiano, Oxford University Press, Oxford, 2006.
[24] Rayo, A. and T. Williamson, “A completeness theorem for unrestricted first-order languages,” pp. 331-56 in Liars and Heaps: New Essays on Paradox, edited by J. C. Beall, Oxford University Press, Oxford, 2003. · Zbl 1134.03309
[25] Schneider, H. H., “Semantics of the predicate calculus with identity and the validity in the empty individual-domain,” Portugaliae Mathematica, vol. 17 (1958), pp. 85-96. · Zbl 0084.24703
[26] Simpson, S. G., Subsystems of Second Order Arithmetic, Springer, Berlin, 1999. · Zbl 0909.03048
[27] Studd, J. P., Everything, More or Less: A Defence of Generality Relativism, Oxford University Press, Oxford, 2019. · Zbl 1448.03003
[28] Tarski, A., “Über den Begriff der logischen Folgerung,” pp. 1-11 in Actes du Congrès international de philosophie scientifique (Sorbonne, Paris, 1935), vol. 7 of Logique, Hermann, Paris, 1936. · JFM 62.1050.05
[29] Tarski, A., Logic, Semantics, Metamathematics: Papers from 1923 to 1938, 2nd edition, edited by J. Corcoran, Hackett Publishing, Indianapolis, 1983.
[30] Tarski, A., and R. L. Vaught, “Arithmetical extensions of relational systems,” Compositio Mathematica, vol. 13 (1956), pp. 81-102. · Zbl 0091.01201
[31] Wagner, H., “Quine’s substitutional definition of logical truth and the philosophical significance of the Löwenheim-Hilbert-Bernays theorem,” History and Philosophy of Logic, vol. 40 (2019), pp. 182-99. · Zbl 1427.03025 · doi:10.1080/01445340.2018.1534196
[32] Williamson, T.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.