×

An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems. (English) Zbl 1474.45069

Summary: In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter \(\delta\) characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to exhibit at most first order convergence to the local counter part as \(\delta \rightarrow 0\), the proposed Neumann-type boundary formulation recovers the local case as \(O(\delta^2)\) in the \(L^{\infty} (\Omega)\) norm, which is optimal considering the \(O(\delta^2)\) convergence of the nonlocal equation to its local limit away from the boundary. We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and present conditions under which the solution of the nonlocal boundary value problem converges to the solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the approach to less regular domains, numerically verifying that we preserve second-order convergence for non-convex domains with corners. Based on the new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions that converges with \(O(\delta^2)\) convergence.

MSC:

45K05 Integro-partial differential equations
76R50 Diffusion
65R20 Numerical methods for integral equations

Software:

LAMMPS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] X. Antoine and H. Barucq, Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering. ESAIM: M2AN 39 (2005) 1041-1059. · Zbl 1074.78004
[2] B. Aksoylu and T. Mengesha, Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31 (2010) 1301-1317. · Zbl 1206.35251
[3] B. Alali and M. Gunzburger, Peridynamics and material interfaces. J. Elast. 120 (2015) 225-248. · Zbl 1455.74009
[4] E. Askari, J. Xu and S. Silling, Peridynamic analysis of damage and failure in composites. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. AIAA, Reston, VA (2006).
[5] M. Astorino, F. Chouly and M.A. Fernández, Robin based semi-implicit coupling in fluid-structure interaction: stability analysis and numerics. SIAM J. Sci. Comput. 31 (2009) 4041-4065. · Zbl 1323.74099
[6] B. Baeumer, M. Kovács, M.M. Meerschaert and H. Sankaranarayanan, Boundary conditions for fractional diffusion. J. Comput. Appl. Math. 336 (2018) 408-424. · Zbl 1386.35424
[7] S. Badia, F. Nobile and C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227 (2008) 7027-7051. · Zbl 1140.74010
[8] G. Barles, C. Georgelin and E.R. Jakobsen, On Neumann and oblique derivatives boundary conditions for nonlocal elliptic equations. J. Diff. Equ. 256 (2014) 1368-1394. · Zbl 1285.35122
[9] Z.P. Bažant and M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128 (2002) 1119-1149.
[10] M.A. Bessa, J.T. Foster, T. Belytschko and W.K. Liu, A meshfree unification: reproducing kernel peridynamics. Comput. Mech. 53 (2014) 1251-1264. · Zbl 1398.74452
[11] F. Bobaru and Y.D. Ha, Adaptive refinement and multiscale modeling in 2D peridynamics. Int. J. Multiscale Comput. Eng. 9 (2011) 635-659.
[12] J.P. Borthagaray, W. Li and R.H. Nochetto, Finite element discretizations of nonlocal minimal graphs: convergence. Preprint (2019). · Zbl 1447.65129
[13] J. Bourgain, H. Brezis and P. Mironescu, Another Look at Sobolev Spaces. IOS Press (2001).
[14] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. Springer Science & Business Media, 15 (2007).
[15] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications. Springer 20 (2016). · Zbl 1377.35002
[16] N. Burch and R. Lehoucq, Classical, nonlocal, and fractional diffusion equations on bounded domains. Int. J. Multiscale Comput. Eng. 9 (2011) 661-674.
[17] F.A. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: M2AN 52 (2018) 163-180. · Zbl 1395.35142
[18] C. Cortazar, M. Elgueta, J.D. Rossi and N. Wolanski, Boundary fluxes for nonlocal diffusion. J. Differ. Equ. 234 (2007) 360-390. · Zbl 1113.35101
[19] C. Cortazar, M. Elgueta, J.D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems. Arch. Ration. Mech. Anal. 187 (2008) 137-156. · Zbl 1145.35060
[20] K. Dayal and K. Bhattacharya, A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Mater. 55 (2007) 1907-1917.
[21] O. Defterli, M. D’Elia, Q. Du, M. Gunzburger, R. Lehoucq and M.M. Meerschaert, Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18 (2015) 342-360. · Zbl 1488.35557
[22] P. Demmie and S. Silling, An approach to modeling extreme loading of structures using peridynamics. J. Mech. Mater. Struct. 2 (2007) 1921-1945.
[23] S. Dipierro, X. Ros Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoamericana 33 (2017) 377-416. · Zbl 1371.35322
[24] S. Dipierro, O. Savin and E. Valdinoci, Boundary behavior of nonlocal minimal surfaces. J. Funct. Anal. 272 (2017) 1791-1851. · Zbl 1358.49038
[25] Q. Du and R. Lipton, Peridynamics, fracture, and nonlocal continuum models. SIAM News 47 (2014).
[26] Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: M2AN 45 (2011) 217-234. · Zbl 1269.45005
[27] Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012) 667-696. · Zbl 1422.76168
[28] Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23 (2013) 493-540. · Zbl 1266.26020
[29] Q. Du, Z. Huang and R.B. Lehoucq, Nonlocal convection-diffusion volume-constrained problems and jump processes. Disc. Cont. Dyn. Syst. B 19 (2014) 961-977. · Zbl 1284.35223
[30] Q. Du, R.B. Lehoucq and A.M. Tartakovsky, Integral approximations to classical diffusion and smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Eng. 286 (2015) 216-229. · Zbl 1423.76363
[31] Q. Du, R. Lipton and T. Mengesha, Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media. ESAIM: M2AN 50 (2016) 1425-1455. · Zbl 1348.74287
[32] Q. Du, Y. Tao and X. Tian, A peridynamic model of fracture mechanics with bond-breaking. J. Elast. 132 (2018) 197-218. · Zbl 1395.74041
[33] E. Emmrich and O. Weckner, Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity. Math. Mech. Solids 12 (2007) 363-384. · Zbl 1175.74013
[34] E. Emmrich and O. Weckner, On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity. Commun. Math. Sci. 5 (2007) 851-864. · Zbl 1133.35098
[35] E. Emmrich and D. Puhst, Survey of existence results in nonlinear peridynamics in comparison with local elastodynamics. Comput. Methods Appl. Math. 15 (2015) 483-496. · Zbl 1327.74003
[36] H.A. Erbay, S. Erbay and A. Erkip, Convergence of a semi-discrete numerical method for a class of nonlocal nonlinear wave equations. ESAIM: M2AN 52 (2018) 803-826. · Zbl 1414.35224
[37] J.T. Foster. Dynamic crack initiation toughness: experiments and peridynamic modeling. . Ph.D. thesis. Purdue University (2009).
[38] W. Gerstle, N. Sau and S. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237 (2007) 1250-1258.
[39] G. Grubb, Local and nonlocal boundary conditions for #-transmission and fractional elliptic pseudodifferential operators. Anal. PDE 7 (2014) 1649-1682. · Zbl 1317.35310
[40] Y.D. Ha and F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78 (2011) 1156-1168.
[41] J.F. Kelly, H. Sankaranarayanan and M.M. Meerschaert, Boundary conditions for two-sided fractional diffusion. J. Comput. Phys. 376 (2019) 1089-1107. · Zbl 1416.35296
[42] R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117 (2014) 21-50. · Zbl 1309.74065
[43] A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M.M. Meerschaert, M. Ainsworth and G.E. Karniadakis, What is the fractional laplacian?. Preprint (2018).
[44] D.J. Littlewood, S.A. Silling, J.A. Mitchell, P.D. Seleson, S.D. Bond, M.L. Parks, D.Z. Turner, D.J. Burnett, J. Ostien and M. Gunzburger, Strong local-nonlocal coupling for integrated fracture modeling. Technical report, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States) (2015).
[45] E. Madenci and E. Oterkus, Peridynamic Theory and its Applications. Springer (2016). · Zbl 1295.74001
[46] E. Madenci, M. Dorduncu, A. Barut and N. Phan, Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput. Methods Appl. Mech. Eng. 337 (2018) 598-631. · Zbl 1440.74030
[47] R.L. Magin, Fractional Calculus in Bioengineering. Begell House Publishers Inc., Redding, CT (2006).
[48] C. Mantegazza and A.C. Mennucci, Hamilton-jacobi equations and distance functions on riemannian manifolds. Appl. Math. Optim. 47 (2003) 1-25. · Zbl 1048.49021
[49] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific (2010). · Zbl 1210.26004
[50] T. Mengesha and Q. Du, Analysis of a scalar peridynamic model with a sign changing kernel. Disc. Cont. Dyn. Sys. B 18 (2013) 1415-1437. · Zbl 1278.45014
[51] T. Mengesha and Q. Du, Nonlocal constrained value problems for a linear peridynamic navier equation. J. Elast. 116 (2014) 27-51. · Zbl 1297.74051
[52] T. Mengesha and Q. Du, Characterization of function spaces of vector fields and an application in nonlinear peridynamics. Nonlinear Anal. 140 (2016) 82-111. · Zbl 1353.46027
[53] E. Montefusco, B. Pellacci and G. Verzini, Fractional diffusion with Neumann boundary conditions: the logistic equation. Disc. Cont. Dyn. Sys. B 18 (2013) 2175-2202. · Zbl 1274.35401
[54] M.L. Parks, P. Seleson, S.J. Plimpton, R.B. Lehoucq and S.A. Silling, Peridynamics with Lammps: A User Guide v0.2 Beta. Sandia National Laboraties (2008).
[55] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press 198 (1998). · Zbl 0924.34008
[56] A.C. Ponce, An estimate in the spirit of poincaré’s inequality. J. Eur. Math. Soc. 6 (2004) 1-15. · Zbl 1051.46019
[57] J. Ren, Z.-Z. Sun and X. Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232 (2013) 456-467. · Zbl 1291.35428
[58] E.W. Sachs and M. Schu, A priori error estimates for reduced order models in finance. ESAIM: M2AN 47 (2013) 449-469. · Zbl 1268.91182
[59] P. Seleson, M. Gunzburger and M.L. Parks, Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains. Comput. Methods Appl. Mech. Eng. 266 (2013) 185-204. · Zbl 1286.74010
[60] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (2000) 175-209. · Zbl 0970.74030
[61] Y. Tao, X. Tian and Q. Du, Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations. Appl. Math. Comput. 305 (2017) 282-298. · Zbl 1411.74058
[62] M. Taylor and D.J. Steigmann, A two-dimensional peridynamic model for thin plates. Math. Mech. Solids 20 (2015) 998-1010. · Zbl 1330.74111
[63] X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52 (2014) 1641-1665. · Zbl 1303.65098
[64] N. Trask, H. You, Y. Yu and M.L. Parks, An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics. Comput. Methods Appl. Mech. Eng. 343 (2019) 151-165. · Zbl 1440.74463
[65] O. Weckner, A. Askari, J. Xu, H. Razi and S.A. Silling, Damage and failure analysis based on peridynamics—theory and applications. In: 48th AIAA Structures, Structural Dynamics, and Materials Conf (2007).
[66] H. Wendland, Scattered Data Approximation. Cambridge University Press 17 (2004). · Zbl 1185.65022
[67] J. Xu, A. Askari, O. Weckner and S. Silling, Peridynamic analysis of impact damage in composite laminates. J. Aerosp. Eng. 21 (2008) 187-194.
[68] Y. Yu, F. Bargos, H. You, M.L. Parks, M.L. Bittencourt and G.E. Karniadakis, A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. Comput. Methods Appl. Mech. Eng. 340 (2018) 905-931. · Zbl 1440.74045
[69] K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48 (2010) 1759-1780. · Zbl 1220.82074
[70] M. Zimmermann, A continuum theory with long-range forces for solids. Ph.D. thesis. Massachusetts Institute of Technology (2005).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.