×

Computing polynomial solutions and annihilators of integro-differential operators with polynomial coefficients. (English) Zbl 07244750

Quadrat, Alban (ed.) et al., Algebraic and symbolic computation methods in dynamical systems. Based on articles written for the invited sessions of the 5th symposium on system structure and control, IFAC, Grenoble, France, February 4–6, 2013 and of the 21st international symposium on mathematical theory of networks and systems (MTNS 2014), Groningen, the Netherlands, July 7–11, 2014. Cham: Springer. Adv. Delays Dyn. 9, 87-114 (2020).
Summary: In this chapter, we study algorithmic aspects of the algebra of linear ordinary integro-differential operators with polynomial coefficients. Even though this algebra is not Noetherian and has zero divisors, Bavula recently proved that it is coherent, which allows one to develop an algebraic systems theory over this algebra. For an algorithmic approach to linear systems of integro-differential equations with boundary conditions, computing the kernel of matrices with entries in this algebra is a fundamental task. As a first step, we have to find annihilators of integro-differential operators, which, in turn, is related to the computation of polynomial solutions of such operators. For a class of linear operators including integro-differential operators, we present an algorithmic approach for computing polynomial solutions and the index. A generating set for right annihilators can be constructed in terms of such polynomial solutions. For initial value problems, an involution of the algebra of integro-differential operators then allows us to compute left annihilators, which can be interpreted as compatibility conditions of integro-differential equations with boundary conditions. We illustrate our approach using an implementation in the computer algebra system Maple.
For the entire collection see [Zbl 1446.93001].

MSC:

47G20 Integro-differential operators

Software:

OreModules; Maple; TenRes
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abramov, S.A., Bronstein, M.: On solutions of linear functional systems. In: Proceedings of ISSAC 2001, pp. 1-6. ACM, New York (2001) · Zbl 1356.65245
[2] Abramov, S.A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. In: Proceedings of ISSAC 1995, pp. 290-296. ACM, New York (1995) · Zbl 0914.65132
[3] Abramov, S.A., Kvansenko, K.Y.: Fast algorithms to search for the rational solutions of linear differential equations with polynomial coefficients. In: Proceedings of ISSAC 1991, pp. 267-270. ACM, New York (1991) · Zbl 0919.65045
[4] Abramov, S.A., Petkovšek, M., Ryabenko, A.: Special formal series solutions of linear operator equations. Discrete Math. 210(1-3), 3-25 (2000) · Zbl 0972.34002
[5] Barkatou, M.A.: On rational solutions of systems of linear differential equations. J. Symb. Comput. 28(4-5), 547-567 (1999) · Zbl 0943.34008
[6] Bavula, V.V.: Finite-dimensionality of \({\rm Ext}^n\) and \({\rm Tor}_n\) of simple modules over a class of algebras. Funktsional. Anal. Prilozhen. 25(3), 80-82 (1991)
[7] Bavula, V.V.: Generalized Weyl algebras and their representations. Algebra i Analiz 4(1), 75-97 (1992) · Zbl 0807.16027
[8] Bavula, V.V.: The algebra of integro-differential operators on a polynomial algebra. J. Lond. Math. Soc. 83(2), 517-543 (2011) · Zbl 1225.16010
[9] Bavula, V.V.: An analogue of the conjecture of Dixmier is true for the algebra of polynomial integro-differential operators. J. Algebra 372, 237-250 (2012) · Zbl 1278.16024
[10] Bavula, V.V.: The algebra of integro-differential operators on an affine line and its modules. J. Pure Appl. Algebra 217, 495-529 (2013) · Zbl 1272.16027
[11] Bavula, V.V.: The algebra of polynomial integro-differential operators is a holonomic bimodule over the subalgebra of polynomial differential operators. Algebr. Represent. Theory 17, 275-288 (2014) · Zbl 1305.16019
[12] Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29, 178-218 (1978) · Zbl 0326.16019
[13] Bokut, L.A., Chen, Y.: Gröbner-Shirshov bases and their calculation. Bull. Math. Sci. 4, 325-395 (2014) · Zbl 1350.13001
[14] Bostan, A., Cluzeau, T., Salvy, B.: Fast algorithms for polynomial solutions of linear differential equations. In: Proceedings of ISSAC 2005, pp. 45-52. ACM, New York (2005) · Zbl 1360.68920
[15] Boulier, F., Lemaire, F., Rosenkranz, M., Ushirobira, R., Verdière, N.: On symbolic approaches to integro-differential equations. In: Quadrat, A., Zerz, E. (eds.) Algebraic and Symbolic Computation Methods in Dynamical Systems, pp. 161-182. Springer, Switzerland (2020)
[16] Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput. 16(5), 319-376 (2005) · Zbl 1109.93018
[17] Chyzak, F., Quadrat, A., Robertz, D.: OreModules: A symbolic package for the study of multidimensional linear systems. Applications of time delay systems. LNCIS, vol. 352, pp. 233-264. Springer, Berlin (2007) · Zbl 1248.93006
[18] Coutinho, S.C.: A Primer of Algebraic \(D\)-Modules, vol. 33. Cambridge University Press, Cambridge (1995) · Zbl 0848.16019
[19] Fliess, M.: Some basic structural properties of generalized linear systems. Syst. Control Lett. 15(5), 391-396 (1990) · Zbl 0727.93024
[20] Gohberg, I., Kaashoek, M.A.: Time varying linear systems with boundary conditions and integral operators. I. The transfer operator and its properties. Integr. Equ. Oper. Theory 7(3), 325-391 (1984) · Zbl 0541.93049
[21] Gohberg, I., Kaashoek, M.A., Lerer, L.: Minimality and irreducibility of time-invariant linear boundary value systems. Int. J. Control 44(2), 363-379 (1986) · Zbl 0598.93007
[22] Hossein Poor, J., Raab, C.G., Regensburger, G.: Algorithmic operator algebras via normal forms for tensors. In: Rosenkranz, M. (ed.) Proceedings of ISSAC 2016, pp. 397-404. ACM, New York (2016) · Zbl 1361.16041
[23] Hossein Poor, J., Raab, C.G., Regensburger, G.: Normal forms for operators via Gröbner bases in tensor algebras. In: Greuel, G.M., Koch, T., Paule, P., Sommese, A. (eds.) Proceedings of ICMS 2016, Lecture Notes in Computing Science, vol. 9725, pp. 505-513. Springer, Berlin (2016) · Zbl 1434.68707
[24] Jacobson, N.: Some remarks on one-sided inverses. Proc. Am. Math. Soc. 1, 352-355 (1950) · Zbl 0037.15901
[25] Komatsu, H.: On the index of ordinary differential operators. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18, 379-398 (1971) · Zbl 0232.34026
[26] Korporal, A., Regensburger, G., Rosenkranz, M.: Symbolic computation for ordinary boundary problems in Maple. ACM Commun. Comput. Algebra 46, 154-156 (2012). Software presentation at ISSAC 2012
[27] Köthe, G.: Topological Vector Spaces. I, Die Grundlehren der mathematischen Wissenschaften, vol. 159. Springer, New York (1969)
[28] Lam, T.Y.: A First Course in Noncommutative Rings. Springer, New York (1991) · Zbl 0728.16001
[29] Levandovskyy, V., Zerz, E.: Algebraic systems theory and computer algebraic methods for some classes of linear control systems. In: Proceedings of MTNS 2006. Kyoto (2006) · Zbl 1391.93003
[30] Malgrange, B.: Sur les points singuliers des équations différentielles. Enseign. Math. 2(20), 147-176 (1974) · Zbl 0299.34011
[31] McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings, Graduate Studies in Mathematics, vol. 30, revised edn. American Mathematical Society, Providence, RI (2001) · Zbl 0980.16019
[32] Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput. Sci. 134, 131-173 (1994) · Zbl 0824.68056
[33] Oberst, U.: Multidimensional constant linear systems. Acta Appl. Math. 20(1-2), 1-175 (1990) · Zbl 0715.93014
[34] Pommaret, J.F., Quadrat, A.: A functorial approach to the behaviour of multidimensional control systems. Int. J. Appl. Math. Comput. Sci. 13(1), 7-13 (2003). Multidimensional systems \(n{{\rm{D}}}\) and iterative learning control (Czocha Castle, 2000) · Zbl 1040.93510
[35] Quadrat, A.: The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. I. (Weakly) doubly coprime factorizations. SIAM J. Control Optim. 42(1), 266-299 (electronic) (2003) · Zbl 1035.93017
[36] Quadrat, A.: An introduction to constructive algebraic analysis and its applications (2010). http://hal.archives-ouvertes.fr/inria-00506104/fr/
[37] Quadrat, A.: A constructive algebraic analysis approach to Artstein’s reduction of linear time-delay systems. IFAC-PapersOnLine 48(12), 209-214 (2015)
[38] Quadrat, A., Regensburger, G.: Polynomial solutions and annihilators of ordinary integro-differential operators. In: Proceedings of SSSC (5th IFAC Symposium on System Structure and Control) 2013, pp. 308-313. IFAC, New York (2013)
[39] Quadrat, A., Ushirobira, R.: Algebraic analysis for the Ore extension ring of differential time-varying delay operators. In: Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems (MTNS), University of Minnesota, Minneapolis, 12-15/07/2016 (2016)
[40] Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to integro-differential operators. In: Proceedings of ISSAC 2009, pp. 287-294. ACM, New York (2009) · Zbl 1237.16023
[41] Robertz, D.: Recent progress in an algebraic analysis approach to linear systems. Multidimens. Syst. Signal Process. 26(2), 349-388 (2015) · Zbl 1348.93078
[42] Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symb. Comput. 43(8), 515-544 (2008) · Zbl 1151.34008
[43] Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis for boundary problems: From rewriting to parametrized Gröbner bases. In: Numerical and Symbolic Scientific Computing: Progress and Prospects, pp. 273-331. SpringerWienNew York, Vienna (2012) · Zbl 1250.65104
[44] Rotman, J.: An Introduction to Homological Algebra, 2nd edn. Springer, New York (2009) · Zbl 1157.18001
[45] Seiler, W.M., Zerz, E.: Algebraic theory of linear systems: A survey. In: Surveys in differential-algebraic equations. II, Differential-Algebraic Equations Forum, pp. 287-333. Springer, Cham (2015) · Zbl 1328.93074
[46] Ufnarovski, V.: Introduction to noncommutative Gröbner bases theory. In: Gröbner bases and applications, pp. 259-280. Cambridge University Press, Cambridge (1998) · Zbl 0902.16002
[47] Wood, J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.