×

Quantum modular invariant and Hilbert class fields of real quadratic global function fields. (English) Zbl 1473.11209

Hilbert’s 12th problem conjectures that every abelian extension of a number field can be described by generalizing the Kronecker-Weber theorem. The paper under review is the first of a series of two and it presents a solution to Manin’s Real Multiplication program for global function fields by using quantum analogs of the modular invariant and the exponential function. The second paper can be found in arxiv.org/pdf/1709.05337v1.pdf.
This first paper deals with Hilbert class field generation in the sense of M. Rosen [Expo. Math. 5, 365–378 (1987; Zbl 0632.12017)]. It is shown that special multivalues of the quantum modular invariant may be used to generate Hilbert class field of real quadratic global function fields.
Let \(k={\mathbb F}_q(T), A={\mathbb F}_q[T]\) and let \(k_{\infty}={\mathbb F}_q ((1/T))\) be the completion at \(\infty\). Following similar procedure as in the number field case, the authors introduce the quantum modular invariant \(j^{\mathrm{qt}}\colon\mathrm{Mod}^{\mathrm{qt}}:=\mathrm{PGL}_2(A)\setminus (k_{\infty}\setminus k)\multimap k_{\infty}\). For \(f\in k_{\infty}\setminus k\), let \(\Lambda_{\epsilon}= \{a\in A\mid |af-b|_{\infty}<\epsilon \text{\ for some\ } b\in A\}\). Then it is defined the approximant \(j_{\epsilon}(f)\) using \(\Lambda_{\epsilon}(f)\). Then \(j\to j^{\mathrm{qt}}(f):=\lim_{\epsilon\to 0}j_{\epsilon}(f)\) defines a discontinuous, \(\mathrm{PGL}_2(A)\)-invariant, multivalued function.
The main result, Theorem 8, is the following. Let \(f\in k_{\infty}\setminus k\) be a fundamental quadratic unit of degree \(d\) in \(T\) and \(K=k(f)\). Then the Hilbert class field \(H\) is given by \(H=K(N(j^{\mathrm{qt}}(f)))\), where \(N(j^{\mathrm{qt}}(f))\) is the product of the \(d\) elements of \(j^{\mathrm{qt}}(f)\). In Theorem 7 is given the description of the narrow Hilbert class field of \(K\).
The theory of Hayes (Drinfeld modules) gives an explicit class field theory for global function fields. In fact for any finite extension \(L/k\), Hayes theory gives explicit descriptions of the class fields associated to rank \(1\) Dedekind domains but does not give explicit descriptions of the Hilbert class field and ray class fields associated to \({\mathcal O}_L\), the integral closure of \(A\) in \(L\). Further, the generators provided by Hayes are not given as values of an analog of a modular function. The explicit class field theory described in the two papers of the authors, in the real quadratic case, is closer to the spirit of Hilbert’s 12-th problem.

MSC:

11R37 Class field theory
11F03 Modular and automorphic functions
11K60 Diophantine approximation in probabilistic number theory
11R58 Arithmetic theory of algebraic function fields
11R80 Totally real fields

Citations:

Zbl 0632.12017
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Castaño Bernard, C.; Gendron, TM, Modular invariant of quantum tori, Proc. Lond. Math. Soc., 109, 4, 1014-1049 (2014) · Zbl 1360.11075 · doi:10.1112/plms/pdu016
[2] Cohn, PM, Algebraic Numbers and Algebraic Functions (1991), London: Chapman and Hall/CRC, London · Zbl 0754.11028 · doi:10.1007/978-1-4899-3444-4
[3] Demangos, L., Gendron, T.M.: Quantum \(j\)-Invariant in positive characteristic I: definition and convergence. Arch. Math. 107 (1), 23-35 (2016). Correction, Arch. Math. 111 (4), 443-447 (2018) · Zbl 1407.11093
[4] Demangos, L.; Gendron, TM, Quantum \(j\)-Invariant in positive characteristic II: formulas and values at the quadratics, Arch. Math., 107, 2, 159-166 (2016) · Zbl 1345.11077 · doi:10.1007/s00013-016-0920-4
[5] Demangos, L., Gendron, T.M.: Quantum Drinfeld modules and ray class fields of real quadratic global function fields, arXiv:1709.05337 (2017)
[6] Demangos, L., Gendron, T.M.: Modular invariant of rank 1 Drinfeld modules and class field generation. To appear in Journal of Number Theory · Zbl 1343.11068
[7] Gekeler, E-U, Zur Arithmetik von Drinfeld Moduln, Math. Ann., 262, 167-182 (1983) · Zbl 0536.14028 · doi:10.1007/BF01455309
[8] Gekeler, E-U, On the coefficients of Drinfeld modular forms, Invent. Math., 93, 3, 667-700 (1988) · Zbl 0653.14012 · doi:10.1007/BF01410204
[9] Gendron, T.M., Leichtnam, E., Lochak, P.: Modules de Drinfeld quasicristallins. arXiv:1912.12323 (2019)
[10] Goss, D., Basic Structures of Function Field Arithmetic (1998), Berlin: Springer, Berlin · Zbl 0892.11021
[11] Hayes, D.R.: A brief introduction to Drinfeld modules. In: Goss, D., Hayes, D. R., Rosen, M. I. (eds.) The Arithmetic of Function Fields, vol. 2, pp. 313-402. Ohio State U. Mathematical Research Institute Publications, Walter de Gruyter, Berlin (1992) · Zbl 0793.11015
[12] Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton University Press, Princeton (2008) · Zbl 1200.11042
[13] Liu, Q., Geometry, Algebraic, Curves, Arithmetic: Oxford Graduate Texts in Mathematics 6 (2002), Oxford: Oxford University Press, Oxford · Zbl 0996.14005
[14] Manin, YI; Laudal, OA; Piene, R., Real multiplication and noncommutative geometry, The Legacy of Niels Henrik Abel, 685-727 (2004), New York: Springer, New York · Zbl 1091.11022 · doi:10.1007/978-3-642-18908-1_23
[15] Marcus, DA, Fields, Number: Universitext (1995), New York: Springer, New York
[16] Neukirch, J.: Algebraic Number Theory. Grundlehren der mathematischen Wissenschaften 322, Springer, Berlin(1999) · Zbl 0956.11021
[17] Pink, R.:Private communication, (21 October 2017)
[18] Rosen, MI, The Hilbert class field in function fields, Expo. Math, 5, 365-378 (1987) · Zbl 0632.12017
[19] Schappacher, N.: On the history of Hilbert’s 12th problem. A comedy of errors. Séminaires et Congrès 3, Société Mathématique de France, 243-273 (1998) · Zbl 1044.01530
[20] Serre, J-P; Cassels, JWS; Frölich, A., Complex multiplication, Algebraic Number Theory, 293-296 (2010), London: London Mathematical Society, London
[21] Shu, L., Kummer’s criterion over global function fields, J. Number Theory, 24, 319-359 (1994) · Zbl 0816.11036 · doi:10.1006/jnth.1994.1098
[22] Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 151. Springer, New York (1994) · Zbl 0911.14015
[23] Thakur, DS, Function Field Arithmetic (2004), Singapore: World Scientific, Singapore · Zbl 1061.11001 · doi:10.1142/5535
[24] Villa Salvador, G.D.: Topics in the Theory of Algebraic Function Fields. Birkhäuser, Boston (2006) · Zbl 1154.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.